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Abstract: Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, a lot of efforts have been 
made in the field of data science to help combat against this disease. Among them, forecasting the number of 
cases of infection is a crucial problem to predict the development of the pandemic. Many deep learning-based 
models can be applied to solve this type of time series problem. In this research, we would like to take a step 
forward to incorporate spatial data (geography) with time series data to forecast the cases of region-level 
infection simultaneously. Specifically, we model a single spatio-temporal graph, in which nodes represent the 
geographic regions, spatial edges represent the distance between each pair of regions, and temporal edges 
indicate the node features through time. We evaluate this approach in COVID-19 in a Korean dataset, and 
we show a decrease of approximately 10% in both RMSE and MAE, and a significant boost to the training 
speed compared to the baseline models. Moreover, the training efficiency allows this approach to be extended 
for a large-scale spatio-temporal dataset. 
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1. Introduction 

1.1. An overview of the study 

On February 6th, 2021, COVID-19 has caused more than 105M confirmed cases and over 2.3M deaths 
globally [1]. To prepare, understand, and control the spread of the disease, researchers worldwide have come 
together in a collaborative effort to model and forecast COVID-19 [2]. In the state of pandemic, the ability to 
accurately forecast caseload is extremely important to help inform policymakers on how to provision limited 
healthcare resources, rapidly control outbreaks, and ensure the safety of the general public [2]. 

Forecasting COVID-19 cases is a time series prediction problem in which given 𝑀 observations, we need 
to predict the most likely number of cases in 𝐻 following time steps. 

 𝑣ො௧ାଵ, … , 𝑣ො௧ାு = argmax௩೟శభ,…,௩೟శಹ log 𝑃(𝑣௧ାଵ, … , 𝑣௧ାு | 𝑣௧ିெାଵ, … , 𝑣௧) (1)

where 𝑣௧ is an observation of the number of confirmed cases at time step 𝑡. 

Time series learning approach is popular in forecasting the next number of cases, for example, applying 
curve-fitting [3], Autoregression (AR) [4], or deep learning [5-7] on time series data. These approaches rely on 
the information from the time series. They can learn some useful insights or hidden patterns from the time series 
and use those to forecast next items in the sequence. 

However, the development of these time series as well as the epidemic in general is affected by many 
other factors, such as people movement, weather, geography, etc. Therefore, in this work, we aim to incorporate 
information from spatial data (geographic location) with temporal data (time series) to make prediction about 
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the number of cases for all locations at the same time. It is very natural and suitable to model our data using the 
structure of a graph where nodes present regions, edges present the geographic distance among regions, and the 
temporal features are the features of node through time. 

This work is inspired by spatio-temporal graph neural network which is successfully applied in traffic 
field, for example STGCN [5], DCRNN [6], and the work of Amol Kapoor et al. [2] in COVID-19 forecasting. 
However, we cannot employ complicated models from traffic field, in which the data is recorded by minutes 
instead of days like ours. Therefore, we aim to improve the performance from the work of Amol Kapoor et al. 
[2], with a simpler model than that in traffic [8,9]. 

We evaluate the effectiveness of the approach when predicting the daily infection cases using a real 
COVID-19 dataset in 17 provinces of Korea. Based on the previous works, we propose a spatio-temporal graph 
neural network that can learn dynamic features from both spatial and temporal domains. Subsequently, we use 
this model to forecast COVID-19 daily new cases for all provinces at once. 

Through this work, our contributions are: 
• We propose a graph neural networks-based model for COVID-19 forecasting which can 

incorporate both spatial and temporal data. The architecture allows the model to process all 
time series simultaneously. With its training efficiency, the model can be extended for large-
scale dataset. 

• Our proposed model is superior to several models, but not as complicated as the one used in 
traffic field. 

• A case study when we apply our proposed method on a real COVID-19 dataset in Korea. 
The remaining of this paper is organized as follows. We briefly introduce related works in the rest of this 

section, including time series forecasting and graph neural networks. In Section 2, we first present our approach, 
from an overview to details of each component. We then present about experimental setup, including dataset, 
data preprocessing, and baseline models. The results are shown in Section 3 and discussed in Section 4. Finally, 
we end up this paper with conclusions in Section 5. 

1.2. COVID-19 and time series forecasting 

In time series analysis, one of the most consolidated classical statistics-based methods is autoregressive 
integrated moving average (ARIMA) and its variants [6]. Some studies have been done to apply ARIMA to 
COVID-19 time series data [10-11]. However, this method is constrained by the stationary assumption of time 
series and is incapable of dealing with the spatial and temporal dependencies. It is also infeasible to apply a 
large model for multiple time series. Nowadays, classic statistical methods have been overwhelmed by machine 
learning models, especially neural networks as higher prediction accuracy and more complicated data 
representation can be obtained by these models. In this work, we will not consider ARIMA as a baseline model 
because our effort is not to optimize models for each time series but a model performing well for all time series. 

In past few years, recurrent neural network (RNN) [7] shows its effectiveness in dealing with sequence 
data, such as connected handwriting recognition [8] or speech recognition [14-15]. Long short-term memory 
(LSTM) [16-17], an artificial RNN architecture, was proposed to process long sequence dependencies and to 
avoid vanishing or exploding gradients problem. LSTMs are the efficient algorithms to build a time series 
sequential model and can be applied for COVID-19 data [18-19]. 

Sequence to Sequence (Seq2Seq) [9] was originally invented for neural machine translation. Attention 
mechanism from Bahdanau's paper [10] and Luong's paper [11] helped to boost the performance of the Seq2Seq 
model. Because it can deal with sequence data, it can be adapted to process COVID-19 time series data [2]. 

1.3. Graph neural networks 

Recently, graph neural network has drawn more attention because of the great expressive power of graphs 
[12]. There are two approaches have been proposed to generalize convolution neural networks (CNN) for graph 
structure [5]. Those are to apply convolution operation on certain grid forms of rearranged vertices or in spectral 
domain with graph Fourier transforms [13]. Several studies follow the latter approach to reduce the 
computational complexity of graph convolution using approximation [25-26]. 

Spatio-temporal graph neural network has been applied successfully in traffic, such as STGCN [5], 
DCRNN [6], etc. In traffic prediction on road graphs, the problem is to predict the most likely traffic 
measurements (e.g., traffic flow or speed) in the following time steps for 𝑛 road segments. By defining the 
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traffic network on a graph and focusing on structured traffic time series, they can predict for short and long 
terms with relatively low errors. 

The work related directly to this study is from Amol Kapoor et al. [2]. They try to incorporate mobility 
data into the graph. Mobility data, which is generated by GPS of portable devices under permission of people, 
to some extents, can describe the movement of people into and out of regions through time. This is a crucial 
information for modeling the disease related directly to human transmission. In this work, we cannot have 
access to the mobility data of people, hence, we replace it by the location of regions, which is similar to traffic 
field when using location of sensors. 

1.4. Graph convolution network 

Convolution on Graphs operator ∗𝒢 in the spectral domain can be regarded as the multiplication of a 
signal 𝑥 ∈ ℝ௡ (a scalar for every node) with a kernel Θ. 

 Θ∗𝒢𝑥 = Θ(𝐿)𝑥 = Θ(𝑈Λ𝑈்)𝑥 = 𝑈Θ(Λ)𝑈்𝑥 (2)

where graph Fourier basis 𝑈 ∈ ℝ௡ × ௡ is the matrix of eigenvectors of the normalized graph Laplacian 𝐿 = 𝐼௡ − 𝐷ିభమ𝑊𝐷ିభమ = 𝑈Λ𝑈் ∈ ℝ௡ × ௡ (𝐼௡ is an identity matrix, 𝐷 ∈ ℝ௡ × ௡ is the diagonal degree matrix 
with 𝐷௜௜ = ∑ 𝑊௜௝௝ , 𝑊 is the adjacency matrix) with a diagonal matrix of its eigenvalues Λ ∈ ℝ௡ × ௡; filter Θ(Λ) can be interpreted as a function of the eigenvalues of Λ, and is also a diagonal matrix [5]. By this 
definition, a graph signal 𝑥  is filtered by a kernel Θ  with multiplication between Θ  and graph Fourier 
transform 𝑈்𝑥 [14]. 

Evaluating Eq. (2) is computationally expensive because of 𝒪(𝑛ଶ)  multiplications with eigenvector 
matrix 𝑈  (graph Fourier basis) and expense of eigen-decomposition of 𝐿  for large graph. Thus, two 
approximation strategies were proposed to reduce the complexity. 

Chebyshev Polynomials Approximation To avoid the problem, the kernel Θ can be well approximated 
by a truncated expansion up to 𝐾th order in terms of Chebyshev polynomial 𝑇௞(𝑥), as Θ(Λ) ≈ ∑ 𝜃௞𝑇௞൫Θ෩൯௄௞ୀ଴  
with rescaled Θ෩ = ଶஃఒ೘ೌೣ − 𝐼௡ (𝜆௠௔௫ is the largest eigenvalue of 𝐿), and 𝜃 ∈ ℝ௄ାଵ is a vector of Chebyshev 

coefficients [15]. The graph convolution equation now becomes: 

 Θ∗𝒢𝑥 = Θ(𝐿)𝑥 ≈ ෍ 𝜃௞𝑇௞൫𝐿෨൯𝑥௄
௞ୀ଴   (3)

where 𝑇௞൫𝐿෨൯ ∈ ℝ௡ × ௡ is the Chebyshev polynomial of order 𝑘 evaluated at the scaled Laplacian 𝐿෨ =ଶ௅ఒ೘ೌೣ − 𝐼௡. Now, the equation is 𝐾-localized as it is a 𝐾th order polynomial in the Laplacian. 𝐾 denotes the 

kernel size of graph convolution, which determines the maximum steps that nodes are away from the central 
node. By using this 𝐾-localized convolutions, evaluating Eq. (2) costs 𝒪(𝐾|ℰ|) (i.e., linear in the number of 
edges) as Eq. (3) shows [16]. 

1st-order Approximation We now can limit 𝐾 = 1  in Eq. (3) to make the layer-wise convolution 
operation linear w.r.t 𝐿 and therefore linear on the graph Laplacian spectrum. As a result, a deeper neural 
network-based model stacking these first-order approximation graph convolution layers can still recover spatial 
information without being limited to the explicit parameterization given by the Chebyshev polynomials [17]. 
Because neural networks are expected to adapt parameters to the change of scale during training, we can further 
approximate 𝜆௠௔௫ = 2. Under these approximations, the Eq. (3) is simply expressed as: 

 Θ∗𝒢𝑥 ≈ 𝜃଴𝑥 + 𝜃ଵ ൬ 2𝜆௠௔௫ 𝐿 − 𝐼௡൰ 𝑥 ≈ 𝜃଴𝑥 − 𝜃ଵ(𝐷ିଵଶ𝑊𝐷ିଵଶ)𝑥 (4)

where 𝜃଴ and 𝜃ଵ are two shared parameters of the kernel. To constrain the number of parameters and 
alleviate numerical instabilities, 𝜃଴ and 𝜃ଵ can be replaced by a single parameter 𝜃 = 𝜃଴ = −𝜃ଵ; 𝑊 and 𝐷 
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are renormalized by 𝑊෩ = 𝑊 + 𝐼௡  and 𝐷෩௜௜ = ∑ 𝑊෩௜௝௝ . This leads to the alternative expression of the graph 
convolution: 
 Θ∗𝒢𝑥 ≈ 𝜃(𝐼௡ + 𝐷ିଵଶ𝑊𝐷ିଵଶ)𝑥 ≈ 𝜃(𝐷෩ିଵଶ𝑊෩ 𝐷෩ିଵଶ)𝑥 (5)

Stacking 1st-order approximation of graph convolution layers effectively exploits the information from the 𝐾-order neighborhood of a node, where 𝐾 is the number of successive filtering operations or convolutional 
layers in the model. Furthermore, the layer-wise linear formulation allows us to construct deeper models with 
a fixed computational budget, because the order of the approximation is limited to one [5], [17]. 

Generalization of Graph convolutions The graph convolution operator ∗𝒢 defined on a signal 𝑥 ∈ ℝ௡ 
can be generalized to a multi-dimensional signal 𝑋 ∈ ℝ௡×஼೔ with 𝐶௜ channels (i.e. a  𝐶௜-dimensional feature 
vector for every node) as follows: 
 𝑦௝ = ෍ Θ௜,௝(𝐿)𝑥௜஼೔

௜ୀଵ ∈ ℝ௡, 1 ൑ 𝑗 ൑ 𝐶௢ (6)

with the 𝐶௜ × 𝐶௢ vectors of Chebyshev coefficients Θ௜,௝ ∈ ℝ௄ (𝐶௜, 𝐶௢ are the size of input and output of 
the feature maps, respectively). The graph convolution for 2-dimensional variables (2D) is denoted as Θ∗𝒢𝑋 
with Θ ∈ ℝ௄×஼೔×஼೚ [5]. 

2. Materials and Methods  

In this section, we present our proposed method and experimental setup. For the former part, we show an 
overview of our method and explain each component in detail in the following subsections. For the latter one, we 
present how we conduct experiments to evaluate our methods and other baseline models on a real dataset. 

2.1. Proposed method 

The general architecture of our approach is described in Figure 1. The input is time series of all 
regions/provinces, and the output is predictions for next time steps of corresponding provinces. In particular, we 
employ 1D convolution network (1D CNN or Conv1D) and graph convolution to extract temporal and spatial 
features, respectively. After convolution operators, the output is processed and passed through a fully connected 
layer to produce final prediction. In the following subsections, we will discuss more details about graph data 
structure modeling and prominent components of our model. 

One special point of this design is to process and predict all time series simultaneously instead of building a 
model for each time series or iterating through each time series. 

 

Figure 1. A visualization of our approach's architecture. 

For clarity, only process for center node is presented, and the same mechanism is applied for all other nodes. 
Conv1D is used to extract temporal features. At each graph convolution layer, the output of the first Conv1D (𝐻଴, 
represented in purple) is concatenated and propagated to the next layer. In a graph convolution layer, a node 
aggregates information from its immediate neighbors (nodes in same color region) to process in the next layer. 
The output of the last convolution is passed through a fully connected layer to produce final prediction. 
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2.1.1. Modeling the graph 

Before explaining about components of our model, we present how to model the data structure, which is the 
input to our model. 

In this problem, we have multiple time series data which indicate the number of daily infection cases in each 
location (province). In other words, 𝑣௧ in the Eq. (1) can be regarded as a vector (or a matrix with one dimension 
is 1) containing infection cases for all provinces at day 𝑡. It is natural to model locations as nodes in a spatial graph 
where an individual node can have connections to others. Time series data can be incorporated as temporal features 
or temporal edges of these nodes. 

In order to model spatial and temporal dependencies, we create a graph with two types of edge. In the spatial 
domain, edges represent distance between each pair of locations based on coordinates. In the temporal domain, 
edges simply represent connection to previous days. Temporal edges can be interpreted as sets of connected 
temporal features through time. The graph-structured data is visualized in Figure 2. Note that, graph notion in 
Figure 1 is the graph representation in hidden layers, and that in Figure 2 is spatial graph data in each time step. 

 

Figure 2. Graph data structure showing spatial and temporal edges (black and red, respectively). 

Each node (province) has spatial edges to others in the same time step (same bounding box) and has temporal 
edges to itself in previous days (previous bounding box). At time step 𝑡, 𝑣௧ indicates the number of cases in all 
provinces. For clarity, only temporal edges to the center node are shown. In practice, every node in the graph has 
direct temporal edges to itself in 𝑀 − 1 previous days. When processing, a graph at a time step will be passed 
through all steps in Figure 1. 

Spatial dependencies are built from the coordinates of provinces. We first computed a matrix of distance 
which contain pairwise distance from provinces' coordinates. It is then used to compute adjacency matrix 𝑊 in 
Eq. (5), as same as the work in [6]. 

 𝑊௜௝ = ൞exp ൭− 𝑑𝑖𝑠𝑡൫𝑎௜, 𝑎௝൯ଶ𝜎ଶ ൱ if exp ൭− 𝑑𝑖𝑠𝑡൫𝑎௜, 𝑎௝൯ଶ𝜎ଶ ൱ ൒ 𝒦0 otherwise  (7)

where 𝑑𝑖𝑠𝑡(𝑎௜, 𝑎௝) is the distance between two nodes 𝑎௜ and 𝑎௝, 𝜎 is the standard deviation of distances 
and 𝒦 is a threshold for sparsity. We set 𝒦 = 0.1 for our dataset. 

The spatial graph of provinces in Korea and the unnormalized adjacency matrix is shown in Figure 3 and 4, 
respectively. The normalized adjacency matrix is used for graph convolution and is computed as from Eq. (5). 

 
 𝐴መ = 𝐷෩ିଵଶ𝑊෩ 𝐷෩ିଵଶ (8)

To build temporal dependencies, time series data is grouped by 𝑀 days (containing 𝑀 − 1 previous days) 
for each node in each time step. 1D CNN is used to extract temporal features from these 𝑀-step time series. 
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Figure 3. Korea spatial graph map build from coordinates of each province. 

 

Figure 4. Unnormalized adjacency matrix for spatial graph of provinces in Korea. 

2.1.2. CNN for temporal features extraction 

Although RNN-based models are widely used for time series analysis, they still suffer from time-consuming 
and complicated gate mechanism. On the contrary, CNNs have the advantage of simple structure, fast training, 
and no dependency constraints to previous steps [5]. In this model, we employed 1D temporal convolution layer 
(1D CNN) with a kernel size of 𝐾௧. 
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For each node in the graph 𝒢, the input of CNN can be regarded as a length-𝑀 sequence with 𝐶௜ channels 𝑌 ∈ ℝெ×஼೔ (𝐶௜ = 1 for our input time series data). In this scenario, the 1D CNN explores 𝐾௧ neighbors in the 
input series without padding, which shortens the length of sequences by 𝐾௧ − 1 units each time. Therefore, the 
convolution kernel Γ ∈ ℝ௄೟×஼೔×஼೚ maps the input 𝑌 to an output 𝑍 ∈ ℝ(ெି(௄೟ିଵ))×஼೚. We apply a non-linear 
activation 𝜎 (ReLU in our case) to the output as follows. 
 𝜎(Γ ∗𝒯 𝑌) = 𝜎(𝑍) 

(9)

The CNN can be extended to 3D input by utilizing the same convolution kernel Γ to every node 𝒴௜ ∈ ℝெ×஼೔ 
(i.e., provinces) in 𝒢, noted as Γ ∗𝒯 𝒴 with 𝒴 ∈ ℝெ×௡×஼೔ where 𝑛 is the number of nodes. 

2.1.3. Graph convolution network for spatial features extraction 

In our model, we use Graph convolution network proposed by Kipf and Welling [17] for extracting spatial 
features. Feature of each node contains multiple channels for each time step. Hence, we utilize generalization of 
graph convolutions to aggregate information from neighbor nodes for each channel and in each time step, as shown 
in Figure 1. Stacking two layers of graph convolution allows a node to aggregate information from its 2-hop 
neighbor nodes. 

In particular, the input of case prediction contains 𝑀 time steps of province graphs as Figure 2 shows. Each 
time step 𝑣௧ can be regarded as a matrix 𝑋 ∈ ℝ௡×஼೔, i.e., a matrix of 𝑛 𝐶௜-dimensional vectors for 𝑛 nodes (in 
this case, 𝐶௜ = 1  for the input data). For each time step 𝑡  of 𝑀 , the same kernel Θ  of graph convolution 
operation is applied on 𝑋௧ ∈ ℝ௡×஼೔  in parallel. Hence, the graph convolution can be further extended for 3D 
signals, denoted as Θ∗𝒢𝒳 with 𝒳 ∈ ℝெ×௡×஼೔. 

In our model, graph convolution is not applied directly to the input 𝒳  but to the processed data 𝒳෩ ∈ℝெି(௄೟ିଵ)×௡×஼೚ which is the output of the 𝐾௧-kernel CNN. However, the calculation is unchanged as the meaning 
of each dimension is similar. 

2.1.4. Skip-connection model 

Inspired by the work of Kapoor et al. [2], we utilize skip-connections between layers to avoid diluting the 
self-node feature state. In particular, the output of each graph convolution layer is concatenated with the output of 
the first temporal convolution as supplemental information from temporal node features. Our proposed model can 
be formulated as: 
 𝑯଴ = 𝜎൫Γ∗𝒯 𝒳൯ = 𝜎(Γ∗𝒯 (𝑣௧|𝑣௧ିଵ| … |𝑣௧ିெାଵ)) (10)

 𝑯௟ାଵ = 𝜎(Θ∗𝒢𝑯௟)|𝑯଴ (11)

 𝑯௢ = 𝜎(Γ∗𝒯 𝑯௦) (12)

 𝑯෡ ௢ = 𝑯௢.reshape(𝑯௢.shapeሾ0ሿ, 𝑯௢.shapeሾ1ሿ, −1) (13)

 𝑷 = 𝐹𝐶(𝑯෡ ௢) (14)

where 𝒳 represents for the input data containing of temporal features through 𝑀 time steps. The shape of 
tensor 𝒳 is (batch_size, n_nodes, n_timesteps, n_features) in which batch_size is batch size, n_nodes is the 
number of nodes (provinces) in the graph, n_timesteps is the number of time steps (𝑀 for the input), n_features 
is the number of features of the data (1 for the input). 𝑯 represents for hidden state at layer 𝑙 with shape of 
(batch_size, n_nodes, n_timesteps, n_features). Note that, n_timesteps and n_features are different after each 
layer of our model. Γ∗𝒯  and Θ∗𝒢  are convolution operators for extracting temporal features and spatial features 
(on graph), respectively. | is concatenation and 𝜎 is non-linear function (ReLU for our case). 

According to Equations 10 – 14, the first hidden state 𝑯଴ is the output of a CNN on temporal input 𝒳. This 
hidden state is then concatenated with the output of each graph convolution to create skip connections. After 𝑠 
graph convolution, the hidden state 𝑯௦  is passed through another CNN to extract temporal information and 
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produce hidden state 𝑯௢. The number of time steps is decreased by 2 ∗ (𝐾௧ − 1) (𝐾௧ is the kernel of CNN) 
because there are two CNN layers. The hidden state 𝑯௢ is reshaped to flatten the time and feature dimensions. 
The final prediction 𝑷 having the shape of (batch_size, n_nodes, n_predicted_timesteps) is the output of a fully 
connected layer (𝐹𝐶) applied on the last hidden state 𝑯෡ ௢ (n_predicted_timesteps is the number of time steps 
ahead to forecast). A visualization of these equations is presented in Figure 1. 

2.2. Experimental setup 

In this section, we present preparations to conduct experiments, including dataset, data preprocessing, and 
architecture of models. 

2.2.1. Dataset 

We verify our model on a real COVID-19 in Korea dataset which is reported by Statistic Korea using API 
provided by the public data portal site [31-32]. It includes the number of daily infection cases from April 1st, 2020 
to January 12th, 2021 in all 17 provinces of Korea. We trained all models on 70% of data (until October 20th) and 
evaluate the performance on the other 30%. 

In addition, we also utilize the geographical location (coordinates) of all provinces in Korea extracted from 
COVID-19 in Korea dataset to construct the spatial dependency among nodes in our graph. This dataset is available 
on Kaggle [33]. 

2.2.2. Data preprocessing 

In our time series dataset, we first transform our data into stationary time series. Although many deep learning 
models do not need to assume a stationary input data, the empirical results of this COVID-19 in Korea dataset 
suggest transforming it into a stationary form. In this case, the trend can be removed from the series, and added 
back to forecasts later to return the predictions to the original scale and calculate comparable metrics. 

A standard way to discard non-stationarity in the data is by differencing. The difference value is the result of 
subtraction between the observation of the current time step 𝑡  and the previous observation 𝑡 − 1 . The 
transformation gives us a different series, in other words, the changes to the observations from one time step to the 
next. 

Subsequently, we re-scale the stationary data using standard scaler of scikit-learn, which has the formulation 
 𝑧 = 𝑥 − 𝜇𝜎  (15)

where 𝜇 is the mean of the training samples, and 𝜎 is the standard deviation of the training samples. 

2.2.3. Baselines 

For our experiments, we try to forecast one time step ahead using 𝑀 = 7 previous observations. 
Persistence model (PM) considers that the number of cases at 𝑡 + 1 is equal to that at 𝑡. It is also called the 

naive predictor. 
LSTM baseline model contains a stack of two LSTM layers with 8 units each and a final dense layer. The 

LSTM layers learn sequential information from the input through recurrent neural network. The fully connected 
layer takes the final output from the second LSTM layer and produce a vector of size 17, which is equal to the 
number of time series (or provinces) in the data. 

Seq2Seq model has an encoder-decoder architecture. The encoder comprises of a fully connected layer (with 
4 units) and a GRU layer [18] that can learn from a sequential input and return the full output sequence and the 
last state. The decoder has an inverse structure of the encoder. It takes the output sequence and last state from the 
encoder and applies Bahdanau attention [10] for each decoding step to make predictions for target sequences. The 
number of units for both GRU layers is 4 and the decoder's final dense layer is 1 because we are dealing with a 
regression problem. We use a single Seq2Seq for all time series in our data. 

For both LSTM and Seq2Seq models, we use MSE loss, Adam optimizer [30] with a learning rate of 0.01, 
and a droprate of 0.2 for training. We implement these models using Tensorflow framework. 

As mentioned earlier in Section 1.2, we will not consider ARIMA as a baseline model. We will also not 
consider STGCN [5] here because this model is more complicated and requires much more data. 
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2.2.4. Proposed method setup 

For our proposed model, thanks to the parallel and combination of extended CNN and graph convolution, 
our model is able to process multi-channel input and arbitrary batch size. The first 1D CNN turns 1-channel time 
series into 32-channel graph features. The next two graph convolution layers have 16 output channels each. The 
second 1D CNN also has 16 output channels and the final dense layer has one unit which is equal to number of 
time step ahead to predict. We train the model for 30 epochs with a batch size of 16, Adam optimizer [30] with a 
learning rate of 0.001, MSE loss, and a droprate of 0.2. We implement this model using PyTorch framework for 
flexibility. 

We also implement STGNN model from the work of Kapoor et al. [2]. There are two main differences 
between our model and STGNN. Firstly, instead of 1D CNN layers in Figure 1, STGNN simply uses multilayer 
perceptron (MLP) for the first and the last layer with 4 and 1 unit, respectively. Secondly, STGNN utilizes 
implementation of graph convolution layer from Kifp and Welling [17], which can only process 1-channel signal 
and one graph at a time. For two graph convolution layers, the graph output features (before concatenation) are 1-
channel signal with 4 output units each. The model is trained for 30 epochs with Adam optimizer [30], a learning 
rate of 0.001, MSE loss, and a droprate of 0.2. 

A summary of several hyperparameters is presented in Table 1. The hyperparameters were carefully chosen 
for each model. Note that, arbitrary batch size is only for Seq2Seq and our model. In LSTM model, we use stateful 
LSTM which requires to define batch size in advance. Thus, the batch size of 1 guarantees the model to work with 
any size of training and test set. Meanwhile, as mentioned above, STGNN can only process 1 graph at a time. 

Table 1. Summary of hyperparameters. 

 LSTM Seq2Seq STGNN Our model 

Loss MSE MSE MSE MSE 
Optimizer Adam Adam Adam Adam 

Learning rate 0.01 0.01 0.001 0.001 
Batch size 1 16 1 16 
Drop rate 0.2 0.2 0.2 0.2 
Epochs 10 10 30 30 

We run all the experiments for 5 times and report the mean and standard deviation of the metrics for 
each model. The metrics we use in this study are root mean squared error (RMSE) and mean absolute error 
(MAE). The experiments are conducted on a computer using a NVIDIA GeForce GTX 1050 graphic card. All 
source code is available on Github [34]. 

3. Results 

In this section, we provide the results of the experiments for evaluation. Concretely, we report the metrics 
and running time, and visualize the prediction. 

3.1. Metrics evaluation 

Table 2 shows the performance of our proposed model and baselines in terms of RMSE and MAE on the 
test dataset. It shows the mean and standard deviation of the metrics through 5 runs. It can be seen that graph 
neural network models (GNN) outperform baselines, reducing the errors by around 10%. Between two GNN 
models, our model produces the lower RMSE and MAE error (17.8492 and 8.2180 in comparison to 18.1490 
and 8.2579). 

Table 2. Mean ± Std of RMSE and MAE through 5 runs of each model. 

Models RMSE MAE 
PM 20.2611 9.1661 

LSTM 20.2628 ± 0.0817 9.2138 ± 0.0299 
Seq2Seq 20.5036 ± 0.0391 9.7839 ± 0.1099 
STGNN 18.1490 ± 0.1150 8.2579 ± 0.0468 

Our model 17.8492 ± 0.1730 8.2180 ± 0.0359 
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For a detailed view of the errors for each province, we report in Table 3 and 4. GNN models are able to 
reduce the errors in all time series prediction. Although the performance of 2 GNN models are relatively 
equivalent, our proposed model is likely to reduce the errors in some extreme cases in which the errors are 
extremely high. 

Table 3. Mean ± Std of RMSE through 5 runs for each province prediction of each model. 

 PM LSTM Seq2Seq STGNN Our model 
Seoul 63.5511 63.5036 ± 0.3301 63.9791 ± 0.0872 56.4441 ± 0.5655 54.9129 ± 0.6694 
Busan 12.0118 12.0593 ± 0.1465 12.2181 ± 0.0547 10.9910 ± 0.3565 10.5160 ± 0.1881 
Daegu 7.6158 7.6909 ± 0.0774 7.8842 ± 0.0824 6.6634 ± 0.2267 6.6776 ± 0.0936 

Incheon 14.2581 14.2790 ± 0.1586 14.5660 ± 0.0537 11.4192 ± 0.2510 11.8265 ± 0.0973 
Gwangju 10.3543 10.3539 ± 0.1561 10.3750 ± 0.0590 9.4024 ± 0.1062 9.2534 ± 0.1119 
Daejeon 7.4935 7.5052 ± 0.0491 7.6419 ± 0.0338 6.3342 ± 0.0952 6.1003 ± 0.0707 
Ulsan 12.7090 12.6365 ± 0.0762 13.1233 ± 0.0811 11.2403 ± 0.0905 11.1525 ± 0.0544 
Sejong 1.7047 1.7089 ± 0.0063 3.5590 ± 0.1849 1.4532 ± 0.0226 1.4278 ± 0.0157 

Gyeonggi 36.6409 36.7668 ± 0.2652 36.6879 ± 0.0246 34.5582 ± 0.3343 34.4536 ± 0.5350 
Gangwon 10.7057 10.7263 ± 0.0248 11.4689 ± 0.0738 9.2273 ± 0.0803 9.3150 ± 0.0753 
Chungbuk 14.8771 14.8455 ± 0.0221 15.2735 ± 0.0529 11.7576 ± 0.0809 11.9461 ± 0.1804 
Chungnam 10.8156 10.8347 ± 0.0650 11.3531 ± 0.0360 11.4302 ± 0.1059 11.1253 ± 0.1728 

Jeonbuk 12.2758 12.2363 ± 0.0445 12.3899 ± 0.0600 9.5665 ± 0.0674 9.7965 ± 0.0564 
Jeonnam 4.4800 4.5067 ± 0.0651 4.6905 ± 0.1938 3.9139 ± 0.0856 3.9505 ± 0.0403 

Gyeongbuk 9.2380 9.1812 ± 0.0417 10.0681 ± 0.1808 8.5691 ± 0.0913 8.7161 ± 0.1145 
Gyeongnam 11.7343 11.6796 ± 0.0607 11.8406 ± 0.1072 10.8008 ± 0.0914 10.5990 ± 0.1404 

Jeju 4.1671 4.1307 ± 0.0211 4.6902 ± 0.1688 3.9224 ± 0.1401 3.9845 ± 0.0380 

Table 4. Mean ± Std of MAE through 5 runs for each province prediction of each model. 

 PM LSTM Seq2Seq STGNN Our model 
Seoul 39.4706 39.4846 ± 0.4074   40.0710 ± 0.1108 36.3597 ± 0.3166 35.5140 ± 0.4108 
Busan 8.0000 8.1274 ± 0.1194 8.1865 ± 0.0892 7.3760 ± 0.2389 7.0705 ± 0.1320 
Daegu 4.8706 4.9644 ± 0.0526 5.1375 ± 0.0664 4.1714 ± 0.1184 4.3193 ± 0.0831 

Incheon 9.2706 9.3014 ± 0.0640 10.0981 ± 0.1888 7.5604 ± 0.2083 7.7949 ± 0.1429 
Gwangju 6.1529 6.2686 ± 0.1498 6.7823 ± 0.0983 5.6858 ± 0.1690 5.6629 ± 0.1612 
Daejeon 4.4118 4.4894 ± 0.0348 4.9723 ± 0.1330 3.6891 ± 0.0919 3.6536 ± 0.0562 
Ulsan 6.8588 6.8848 ± 0.0384 7.8574 ± 0.1728 6.1551 ± 0.0420 6.1449 ± 0.0577 
Sejong 1.0941 1.1240 ± 0.0129 2.3987 ± 0.1884 0.9413 ± 0.0318 0.9350 ± 0.0125 

Gyeonggi 27.9412 28.0970 ± 0.2535 27.9170 ± 0.0458 26.4018 ± 0.2213 26.3796 ± 0.3693 
Gangwon 7.3412 7.3820 ± 0.0462 7.9261 ± 0.0866 6.2015 ± 0.0623 6.2606 ± 0.0841 
Chungbuk 7.2353 7.2290 ± 0.0179 8.0714 ± 0.0883 6.0588 ± 0.1039 6.0696 ± 0.1041 
Chungnam 6.9765 7.0361 ± 0.0732 7.7015 ± 0.0639 7.1593 ± 0.0869 7.1329 ± 0.1175 

Jeonbuk 6.8824 6.8854 ± 0.0264 7.0949 ± 0.1349 5.1970 ± 0.0892 5.3656 ± 0.0598 
Jeonnam 3.0588 3.1152 ± 0.0321 3.4256 ± 0.1801 2.8438 ± 0.0578 2.8566 ± 0.0664 

Gyeongbuk 5.8118 5.7977 ± 0.0663 6.8917 ± 0.2320 5.4013 ± 0.0774 5.5025 ± 0.0371 
Gyeongnam 8.1647 8.1249 ± 0.0428 8.4542 ± 0.1940 7.0898 ± 0.1064 6.9739 ± 0.1218 

Jeju 2.2824 2.3229 ± 0.0267 3.3407 ± 0.2404 2.0926 ± 0.0756 2.0688 ± 0.0407 

For visualization purpose, we select to plot time series of three provinces which have the 25-percentile, 
medium and 75-percentile of the errors. Figures 5 – 7 show the ground truth of daily number of infection 
cases and models' forecasts on the test set in Daegu, Jeonbuk, and Ulsan, respectively. According to the 
figures, Seq2Seq model cannot perform well when it even makes negative prediction. This is obvious because 
one single Seq2Seq model cannot deal with different patterns which are featured for each time series. Both 
LSTM and Seq2Seq predictions are about 1 day lagging the ground truth, thus, their performances are similar 
or worse than the PM model. Meanwhile, our model makes more stable predictions. It can follow the trend of 
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the ground truth when the numbers are stable but lag a bit behind when the ground truth fluctuated wildly. 
Our model's numbers do not change as significantly as those of the others. 

Figure 5. The ground truth and predictions (mean and 95% confidence interval) of the number of cases in Daegu. 

Figure 6. The ground truth and predictions (mean and 95% confidence interval) of the number of cases in 

Jeonbuk. 

Figure 7. The ground truth and predictions (mean and 95% confidence interval) of the number of cases in Ulsan. 
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The last thing to note is that in December 2020, Korea witnessed the third wave of infection. It was more 
serious than ever before when the number of daily cases continuously peaked. That makes it harder for the 
models to provide accurate predictions. 

3.2. Training efficiency 

Table 5. Elapsed time for training of each model. 

Models LSTM Seq2Seq Our model 
Elapsed time (s)/Epoch 4.5 5.3 0.04 

Turning to traiing time in Table 5, it respectively takes LSTM and Seq2Seq approximately 4.5 and 5.3 
seconds to finish training an epoch. For our model, only about 0.04 seconds is needed for an epoch with a batch 
size of 16, accelerating about 100 times. 

4. Discussions 

As shown in Table 2, our model and STGNN were able to reduce the errors comparing to other baselines. 
This means that, to some extents, the spatial data does impact on the behavior of the temporal data. Because 
other baseline models only relied on the time series data. Meanwhile, our model and STGNN also modeled 
distance relationship among provinces as spatial dependencies among these time series. 

As a result, spatio-temporal graph is an effective method to combine temporal and spatial data together. 
In this research, we can utilize time series data of all provinces and the distance relationships among these 
provinces to forecast the following time steps. For further study, we can use different data to construct temporal 
and spatial dependencies, such as transportation, temperature or human activities which can have impacts on 
the spread of the disease. Moreover, this work can be also adapted for other spatio-temporal data if we can 
define spatial and temporal domains. 

Between two GNN models, our model is superior to previous STGNN as it further reduces the errors Table 
2. This probably comes from the temporal convolution layer (1D CNN or Conv1D). Particularly, we employ a 
CNN layer instead of a MLP because a CNN layer can explore surrounding time steps better than a normal fully 
connected layer. Another advantage of our model over STGNN is the processing capacity. Because of the 
parallel and combination of extended CNN and graph convolution, our model can process multi-channel input 
and arbitrary batch size. Therefore, we can also incorporate more input information by increasing the number 
of channels of the data. 

As illustrated in Table 5, our model accelerates the training speed by approximately 100 times comparing 
to RNN based models due to couple of reasons. Although there are some differences in the implementation, we 
are also beneficial from the model design. First, we utilize convolution instead of recurrent neural network 
which is simpler and faster, as mentioned in subsection 2.1.2. The model design also allows us to train and 
predict all time series simultaneously, which save us from iterations. The training efficiency shows the potential 
scalability of our model for large scale dataset. 

5. Conclusions 

Forecasting daily COVID-19 infection cases for each region or province is one of crucial problems to help 
the combat with the pandemic. In this study, we developed a graph neural network-based approach for this 
forecasting problem in which we integrated both spatial and temporal data, rather than only time series as other 
RNN-based models. Specifically, we utilized both time series data of all provinces and the distance relationships 
among these provinces to construct spatial and temporal dependencies of the input data. We then applied our 
proposed model to learn both temporal and spatial features and forecast the following time step. The model's 
design allows us to process all time series simultaneously. We evaluated the performance of our model on the 
real COVID-19 dataset in Korea and showed that our model outperformed other RNN-based models, reducing 
the errors by 10% and cutting down the running time significantly. For future work, further processing can take 
more data into account, such as transportation, temperature or human activities which can have impacts on the 
spread of the disease. Moreover, the training efficiency opens potentials for our model to be extended for large 
scale spatio-temporal data or adapted for other fields. 
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