최근 정보통신기술의 발전과 더불어 geographic information system(GIS)의 사용이 점차 일반화되고 그 응용분야와 활용범위가 확대되고 있다. 특히, 지리정보 관찰과 학습에서도 GIS의 활용은 긍정적인 효과가 기대되며, 2차원 시각 교보재인 사진이나 영상물에 비해 보다 사실적으로 지리적 특성을 파악하는데 도움이 될 것이다. 다소 복잡한 지형정보의 효과적인 시각화는 학습자로 하여금 지리정보 이해를 도울 뿐만 아니라, 지리적 정보를 파악하고 분석하는 능력을 키울 수 있다. 본 논문에서는 지리 학습에서 활용할 수 있는 학습보조자료 개발을 목표로 증강현실기술을 이용한 다양한 지형정보 가시화 기법과 사례를 연구하였다. 더불어 증강현실기반의 지리 학습을 위해, 기존에 구축된 GIS 데이터의 가공과정과 가공사례를 소개함으로써 3차원 지리정보의 효과적 가시화를 위해 증강현실 기술을 적용할 가치가 있음을 나타내었다.
학생들의 지리적 이해와 개념 발달 그리고 기능 습득 등이 복합적인 배경 변인의 영향을 받고 있음이 점점 더 분명해지고 있다. 복합적인 배경 변인 중에서 성별 차이는 오랫동안 지리학자와 심리학자들의 관심 대상이었다. 최근 지리적 지식과 공간적 능력에서 나타나는 성별 차이는 성적 고정관념을 강화하는 사회문화적 요인들에서 기인한 것이라는 주장이 제기되고 있다. 지리 학습에 영향을 미치는 주요 변인으로 고려되는 성별 차이는 단순한 차이 그 자체보다는. 다면적인 젠더에 대한 과정 변인으로 진술되고 탐구되는 것이 바람직하다. 이에 본 연구는 성별 차이와 젠더 특성이 지리 수업에 미치는 영향을 이론적으로 고찰하고. 실제 중학교 지리 수업에서 이루어지는 학습 지역과 학습 내용 그리고 학습 활동에 대한 성별 차이와 젠더 특성을 조사하였다. 연구 결과, 지리 학습에서는 성별 차이보다는 유사성이 더 많이 나타났으며. 젠더별 특성이 다양하게 나타났다. 이는 학습의 개인차를 고려하는데 적절한 것은 단순한 성별 차이보다는 좀더 구체적이고 다면적인 젠더 특성임을 시사한다. 더불어 이러한 특성들이 학습 효율성을 장려하는데 어떠한 영향을 미치는지에 대한 설명이 이루어지면, 지리 교육을 증진하는데 직접적인 도움이 될 것이다.
우리나라 원격탐사 분야에서는 2017년을 기점으로 딥러닝의 뛰어난 성능을 바탕으로 연구 성과를 나타내기 시작하여, 현재는 영상 전처리부터 활용까지 원격탐사의 거의 모든 분야에서 딥러닝을 적용하는 연구가 수행되고 있다. 원격탐사 분야에 적용된 딥러닝의 연구 동향 분석을 수행하기 위해, 2021년 10월까지 출판된 원격탐사 분야에 딥러닝이 적용된 국내 논문들을 수집하였다. 수집된 60여 편의 논문들을 바탕으로 딥러닝 네트워크 목적, 원격탐사 활용 분야, 원격탐사 영상 취득 탑재체별로 나누어 연구 동향 분석을 수행하였다. 또한, 논문에서 훈련자료 구축에 효과적으로 이용되었던 오픈소스데이터들을 정리하였다. 본 논문을 통해 현시점에서 딥러닝이 원격탐사 분야에 자리잡기 위해 해결해야 할 문제점들을 제시하면서, 향후 연구자들의 원격탐사 분야에 딥러닝 기술을 접목하기 위한 연구 방향을 설정하는 데 도움을 제공하고자 한다.
Recently, researches that are using deep learning technology in various fields are being conducted. The fields include geographic map processing. In this paper, I propose a method to infer where the map area included in the image is. The proposed method generates and learns images including a map, detects map areas from input images, extracts character strings belonging to those map areas, and converts the extracted character strings into coordinates through geocoding to infer the coordinates of the input image. Faster R-CNN was used for learning and map detection. In the experiment, the difference between the center coordinate of the map on the test image and the center coordinate of the detected map is calculated. The median value of the results of the experiment is 0.00158 for longitude and 0.00090 for latitude. In terms of distance, the difference is 141m in the east-west direction and 100m in the north-south direction.
본 연구에서는 드론으로 취득한 고해상도 정사영상 자료를 이용하여, 컨볼루션 신경망(Convolution Neural Network, CNN)을 이용한 딥러닝 기법을 통해 수종에 대한 자동분류 가능성을 분석해 보고자 하였다. 수종판독을 위한 분류항목을 소나무, 자작나무, 낙엽송, 잣나무 그리고 신갈나무 5개 수종으로 선정하였다. 고해상도 정사영상과 임상도를 이용하여 총 5,000개의 데이터셋을 구축하였다. 수종분류를 위한 학습모델로 CNN 기법을 적용하였고, 데이터셋을 5:3:2의 비율로 훈련데이터, 검증테이터, 테스트데이터를 구분하여 모델의 학습 및 평가에 사용하였다. 모델의 전체 정확도는 89%로 나타났으며, 수종별 정확도는 소나무 95%, 자작나무 89%, 낙엽송 80%, 잣나무 86%, 신갈나무 98%로 나타났다.
항공사진 촬영량이 증가함에 따라 품질검사 자동화의 필요성이 대두되고 있다. 본 연구에서는 딥러닝 기법으로 항공사진 내 구름을 분류 또는 탐지하는 실험을 수행하였고, 또한 위성영상을 학습자료에 포함시켜 분류 및 탐지를 수행하였다. 실험에 사용한 알고리즘으로는 GoogLeNet, VGG16, Faster R-CNN과 YOLOv3을 적용하여 결과를 비교하였다. 또한 구름이 포함된 오류영상 확보의 현실적 제한을 고려하여 항공영상만 존재하는 학습 데이터세트에서 위성영상을 활용한 추가학습이 분류 및 탐지정확도에 영향을 미치는지도 분석하였다. 실험결과, 항공사진의 구름 분류와 탐지에서 각각 GoogLeNet과 YOLOv3 알고리즘이 상대적으로 우월한 정확도를 나타냈고, GoogLeNet은 구름에 대한 생산자정확도 83.8% 그리고 YOLOv3는 구름에 대한 생산자정확도 84.0%를 보여주었다. 또한, 위성영상 학습자료 추가가 항공사진 자료의 부족 시 대안으로 적용가능 함을 보여주었다.
주택가격을 정확히 추정하기 위한 많은 연구가 진행되어 왔다. 선행연구들은 주택의 고유 특성과 인근 지역 특성을 통제하는 계량경제모형을 활용한 분석이 많았다. 본 연구에서는 인공신경망 모형(ANN)을 활용하여 주택가격을 추정하였다. 딥러닝 기술의 장점은 변수 간의 복잡하고 비선형적인 특성을 모델링하고 데이터의 패턴을 인식할 수 있다는 것이다. 본 연구에서는 부동산 시장에서 공간적 분포도 패턴으로 인식할 수 있다는 가정하에 지리좌표를 설명변수로 ANN에 투입하였다. 선형회귀분석과 ANN 모형 간 비교 결과, 선형 모형 대비 ANN 모형의 설명력이 높았으며, 특히 ANN 모형은 지리좌표를 투입하였을 때 더 높은 정확도를 보여주었다. 또한 ANN 모형의 경우 지리좌표를 통해 모형 잔차의 공간적 자기 상관성이 크게 감소하였다는 점을 확인하였다. 이를 통해 ANN 모형의 패턴인식 능력을 활용하면 공간적 패턴을 학습시킴으로써 주택가격을 정확히 추정할 수 있음을 밝혔다.
본 연구는 지리교육에서 지리적 가치문제를 다룰 수 있는 가치 교수-학습 프로그램을 개발하고, 이 프로그램의 전개과정을 구성하였다. 본 연구에서 개발한 프로그램은 7단계의 수업절차 즉, 지리적 가치문제의 인식(지리적 가치문제의 내용 읽기, 그리고 관련된 행동 기술과 목록화), 지리적 가치문제의 분석(지리적 가치문제의 분석과 비교, 그리고 가치입장의 순위화), 의사결정, 의사결정의 정당화 그리고 행동화로 조직되었다. 그리고 본 프로그램을 실험집단에 적용하여 간단한 임상실험을 실기하였다. 그 결과, 지역사회문제에 대한 의사결정과정과 활동을 강조하는 본 프로그램은 학생들에게 주관적인 경험을 제공하고, 의사결정능력을 개발하고, 의사결정에 대한 책임의식을 심어줄 수 있는 것으로 나타났다. 그래서 본 수업 프로그램은 학생들의 민주시민으로서의 사회적 참여능력을 신장시키는데 도움을 줄 수 있을 것으로 생각된다.
This research proposes the composition logic of an Active Learning Environment (ALE), to enable discovery by learning through experience, whilst increasing knowledge about modern architectural heritage. Linking information to the historical heritage using Information and Communication Technology (ICT) helps to overcome the limits of previous learning methods, by providing rich learning resources on site. Existing field trips of cultural heritages are created to impart limited experience content from web resources, or receive content at a specific place through humanities Geographic Information System (GIS). Therefore, on the basis of the blended space theory, an augmented space experience method for overcoming these shortages was composed. An ALE space framework is proposed to enable discovery through learning in an expanded space. The operation of ALE space is needed to create full coordination, such as a Content Management System (CMS). It involves a relation network to provide knowledge to the rule engine of the CMS. The application is represented with the Deoksugung Palace Seokjojeon hall example, by describing a user experience scenario.
이 연구는 광물과 암석을 주제로 진행된 야외지질학습에 참여한 초등학생들의 학습 효과를 생소한 경험 공간(Novelty space) 개념을 중심으로 탐색하는 것을 목적으로 한다. 방과 후 자율 동아리 활동 형식으로 서울의 한 공립초등학교에서 진행된 본 프로그램에 6학년 학생 총 10명이 참여하였다. 학생들은 교실 학습 환경에서 광물과 암석 표본을, 야외 학습 환경에서 노두에 노출되었거나 정원석 등으로 쓰이고 있는 광물과 암석을 각각 관찰하였다. 저자들은 각 차시별 연구 참여자들이 작성한 활동지(글, 그림), 연구자 참여 노트, 연구 참여자의 활동이 담긴 영상 및 음성 자료와 사후 인터뷰 자료를 수집하였다. 인지적 영역에서 학생들의 학습 효과를 분석하기 위해 Remmen and Frøyland (2020)의 암석 분류를 위한 관찰 분석틀과 Oh (2020)의 암석 기술어 분석틀을 활용하였다. 또한 심리 및 지리적 영역의 학습 효과를 탐색하기 위해 학생들의 그림과 담화 및 면담 자료를 귀납적으로 분석하였다. 연구 결과 학생들은 교실 학습 환경에서 '일상적', '과도기적' 관찰 양상을 보였으며 야외 학습 환경에서(학교 운동장, 지역사회)는 '과도기적' 및 '과학적' 관찰 단계까지 발전하는 모습을 나타냈다. 덧붙여 과학적 관찰 단계로 갈수록 더 많은 종류의 암석 기술어가 사용되는 것 또한 확인되었다. 심리, 지리적 측면에서 학생들은 익숙한 야외 학습 환경으로의 답사 장소 선정, 야외지질학습에 대한 긍정적인 인식, 심미적 감상 등을 표현하였다. 끝으로 이 연구는 학생들의 학습 효과 분석을 위한 도구로써 생소한 경험 공간 개념이 유용한 도구가 될 수 있음을 강조하며 아울러 가상야외지질학습과 같은 새로운 학습환경을 고려하는 학술적인 접근이 필요함을 제안하는 바이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.