Journal of the Korean Association of Geographic Information Studies
/
v.14
no.3
/
pp.96-109
/
2011
Recently, the geographic information system(GIS) is generally used in various fields with the development of information and communication technology, with expansion of its applications and utilization scope. Especially, utilizing GIS is expected to have positive effects on the geography learning and more helpful for the geographic information observation compared to the picture or 2D based media. The effective visualization of complex geographic data does not only take realization of its visual information but also increases the human ability in analysis and understanding to use the geographic information. In this paper, we examine a method to develop the geography learning contents based on the technology with augmented reality and GIS, and then we have a case study for various kinds of visualization techniques and examples to use in geography learning situation. Moreover, we introduce an example of the manufacturing process from the existing GIS data to augmented reality based geography learning system. From the above, we show that the usefulness of our method is applicable for effective visualization of the three-dimensional geographic information in the geography learning environment.
It is increasingly clear that student mastery of concepts and skills in geographic education is based on a complex set of variables. Sex and gender are the key variables. Much has been written about biological sex differences in learning, but less attention has been paid to the impacts of socio-cultural gender on learning geography. As such, the aims of this paper are two-fold. First, to examine theories which seek to explain why males and females might differ in their geographic and spatial knowledge or skill. Second, to examine the extent of sex differences and gender traits in the geographic learning. The results of study illustrate clearly that there are more similarities than differences between the sexes. Therefore, there are significant gender differences between the preferences of regions, contents, activities in the secondary geographic learning. The results also provide insights into improving contents and method of geographic education.
Lee, Changhui;Yun, Yerin;Bae, Saejung;Eo, Yang Dam;Kim, Changjae;Shin, Sangho;Park, Soyoung;Han, Youkyung
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.6
/
pp.437-456
/
2021
In the field of remote sensing in Korea, starting in 2017, deep learning has begun to show efficient research results compared to existing research methods. Currently, research is being conducted to apply deep learning in almost all fields of remote sensing, from image preprocessing to applications. To analyze the research trend of deep learning applied to the remote sensing field, Korean domestic journal papers, published until October 2021, related to deep learning applied to the remote sensing field were collected. Based on the collected 60 papers, research trend analysis was performed while focusing on deep learning network purpose, remote sensing application field, and remote sensing image acquisition platform. In addition, open source data that can be effectively used to build training data for performing deep learning were summarized in the paper. Through this study, we presented the problems that need to be solved in order for deep learning to be established in the remote sensing field. Moreover, we intended to provide help in finding research directions for researchers to apply deep learning technology into the remote sensing field in the future.
Journal of Advanced Information Technology and Convergence
/
v.10
no.2
/
pp.61-72
/
2020
Recently, researches that are using deep learning technology in various fields are being conducted. The fields include geographic map processing. In this paper, I propose a method to infer where the map area included in the image is. The proposed method generates and learns images including a map, detects map areas from input images, extracts character strings belonging to those map areas, and converts the extracted character strings into coordinates through geocoding to infer the coordinates of the input image. Faster R-CNN was used for learning and map detection. In the experiment, the difference between the center coordinate of the map on the test image and the center coordinate of the detected map is calculated. The median value of the results of the experiment is 0.00158 for longitude and 0.00090 for latitude. In terms of distance, the difference is 141m in the east-west direction and 100m in the north-south direction.
Journal of the Korean Association of Geographic Information Studies
/
v.24
no.3
/
pp.1-9
/
2021
In this study, we evaluated the accuracy of deep learning-based tree species classification model trained by using high-resolution images. We selected five species classed, i.e., pine, birch, larch, korean pine, mongolian oak for classification. We created 5,000 datasets using high-resolution orthophoto and forest type map. CNN deep learning model is used to tree species classification. We divided training data, verification data, and test data by a 5:3:2 ratio of the datasets and used it for the learning and evaluation of the model. The overall accuracy of the model was 89%. The accuracy of each species were pine 95%, birch 89%, larch 80%, korean pine 86% and mongolian oak 98%.
Song, Junyoung;Won, Taeyeon;Jo, Su Min;Eo, Yang Dam;Park, So young;Shin, Sang ho;Park, Jin Sue;Kim, Changjae
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.6
/
pp.409-418
/
2021
As the amount of construction for aerial photography increases, the need for automation of quality inspection is emerging. In this study, an experiment was performed to classify or detect clouds in aerial photos using deep learning techniques. Also, classification and detection were performed by including satellite images in the learning data. As algorithms used in the experiment, GoogLeNet, VGG16, Faster R-CNN and YOLOv3 were applied and the results were compared. In addition, considering the practical limitations of securing erroneous images including clouds in aerial images, we also analyzed whether additional learning of satellite images affects classification and detection accuracy in comparison a training dataset that only contains aerial images. As results, the GoogLeNet and YOLOv3 algorithms showed relatively superior accuracy in cloud classification and detection of aerial images, respectively. GoogLeNet showed producer's accuracy of 83.8% for cloud and YOLOv3 showed producer's accuracy of 84.0% for cloud. And, the addition of satellite image learning data showed that it can be applied as an alternative when there is a lack of aerial image data.
Journal of the Economic Geographical Society of Korea
/
v.25
no.1
/
pp.183-201
/
2022
Estimating the implicit value of housing assets is a very important task for participants in the housing market. Until now, such estimations were usually carried out using multiple regression analysis based on the inherent characteristics of the estate. However, in this paper, we examine the estimation capabilities of the Artificial Neural Network(ANN) and its 'Deep Learning' faculty. To make use of the strength of the neural network model, which allows the recognition of patterns in data by modeling non-linear and complex relationships between variables, this study utilizes geographic coordinates (i.e. longitudinal/latitudinal points) as the locational factor of housing prices. Specifically, we built a dataset including structural and spatiotemporal factors based on the hedonic price model and compared the estimation performance of the models with and without geographic coordinate variables. The results show that high estimation performance can be achieved in ANN by explaining the spatial effect on housing prices through the geographic location.
The purpose of this study is to develop value instruction program which can deal with geographic value problem(GVP) in geographic education. This program is organized into seven stages: identification of GVP(reading of content of GVP, and categorization and description of action which involved in content), analysis of GVP(comparison and analysis of GVP, and ordering of value positions), decision making, justification of decision making and actualization. The processes of decision making and their related activities are emphasized in this program. In experimental classroom, it took effects to providing subjective experiences with students, developing decision making ability, and giving responsibility of decision making. Therefore this study suggests that this program helps students to improve their social participation ability as the democratic citizenship.
This research proposes the composition logic of an Active Learning Environment (ALE), to enable discovery by learning through experience, whilst increasing knowledge about modern architectural heritage. Linking information to the historical heritage using Information and Communication Technology (ICT) helps to overcome the limits of previous learning methods, by providing rich learning resources on site. Existing field trips of cultural heritages are created to impart limited experience content from web resources, or receive content at a specific place through humanities Geographic Information System (GIS). Therefore, on the basis of the blended space theory, an augmented space experience method for overcoming these shortages was composed. An ALE space framework is proposed to enable discovery through learning in an expanded space. The operation of ALE space is needed to create full coordination, such as a Content Management System (CMS). It involves a relation network to provide knowledge to the rule engine of the CMS. The application is represented with the Deoksugung Palace Seokjojeon hall example, by describing a user experience scenario.
The purpose of this study was to explore the learning effects in elementary school students who participated in a geological field trip conducted under the theme 'minerals and rocks', focusing on novelty space. A total of 10 sixth-grade students participated in this program held at a public elementary school in Seoul as part of after-school club activities. Students observed mineral and rock samples in a classroom and outdoor learning environment. The authors collected activity papers (texts, drawing), researchers' participation notes, video and audio recordings containing the study participants' activities, and post-interview data To analyze the learning effects in the cognitive domain of students, the observation analysis framework for rock classification of Remmen and Frøyland (2020) and the rock description analysis framework of Oh (2020) were used. Additionally, to explore the learning effects of psychological and geographic areas, students' drawings, texts, discourses, and interview data were inductively analyzed. The results showed that the students demonstrated 'everyday' and 'transitional' observations in the classroom learning environment, while in the outdoor learning environment (school playground, community-based activities), they demonstrated 'transitional' and 'scientific' observations. Moreover, as the scientific observation stage progressed, more types of descriptive words for rocks were used. In terms of psychological and geographic aspects, students showed their selection of places to explore familiar outdoor learning environments, positive perceptions of outdoor learning, and aesthetic appreciation. Finally, this study not only discussed novelty space as a tool for analyzing students' learning effects but also suggested the need for an academic approach considering new learning environments, such as learning through virtual field trips.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.