• Title/Summary/Keyword: geographic environment

Search Result 915, Processing Time 0.029 seconds

Predicting Tree Felling Direction Using Path Distance Back Link in Geographic Information Systems (GIS)

  • Rhyma Purnamasayangsukasih Parman;Mohd Hasmadi, Ismail;Norizah Kamarudin;Nur Faziera Yaakub
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.203-212
    • /
    • 2023
  • Directional felling is a felling method practised by the Forestry Department in Peninsular Malaysia as prescribed in Field Work Manual (1997) for Selective Management Systems (SMS) in forest harvesting. Determining the direction of tree felling in Peninsular Malaysia is conducted during the pre-felling inventory 1 to 2 years before the felling operation. This study aimed to predict and analyze the direction of tree felling using the vector-based path distance back link method in Geographic Information Systems (GIS) and compare it with the felling direction observed on the ground. The study area is at Balah Forest Reserve, Kelantan, Peninsular Malaysia. A Path Distance Back Link (spatial analyst) function in ArcGIS Pro 3.0 was used in predicting tree felling direction. Meanwhile, a binary classification was used to compare the felling direction estimated using GIS and the tree felling direction observed on the ground. Results revealed that 61.3% of 31 trees predicted using the vector-based projection method were similar to the felling direction observed on the ground. It is important to note that dynamic changes of natural constraints might occur in the middle of tree felling operation, such as weather problems, wind speed, and unpredicted tree falling direction.

Flood Runoff Analysis of Small River Basin using Geographic Information System (지리정보시스템을 이용한 소하천유역의 홍수유출 해석)

  • Lee, Yeon-Kil;Park, Sung-Chun;Lee, Kwan-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.24-36
    • /
    • 2003
  • Many rainfall-runoff model, which is applied discharge calculation for effective water-resource planning and management needs topographic and parameter of basin character. But it is very difficult to apply real a phase. Accordingly in this study filling up these problems. Applying GIS(geographic information system) through environment creating input data or concerning with GIS and rainfall runoff model. We built environment that analyze hydrograph showing discharge variation by time. GIS software for constructing input data is used by ArcView. For analysis of hydrograph in Basin, TOPMODEL applied topographic index. Besides for estimate of appliance to rainfall-runoff model, simple storm event and complex storm event are applied rainfall data which was before.

  • PDF

An USN Test Bed Construction for Real Time Monitoring of Road Environment Information (실시간 도로 환경 정보 모니터링을 위한 USN 테스트베드 구축)

  • Kang, Jin-A;Kim, Tae-Hoon;Bae, Myung-Nam;Na, Joon-Yeop;Hong, Chang-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.180-192
    • /
    • 2013
  • Recently, the development of the information-communications industry has created a new paradigm of the ubiquitous and the smart environments. An USN is a typical technology for constructing a ubiquitous environments. But the USN technologies applied in practice have a lot of problems and to solve these problems that this study was to build a test bed. For the creation of the needs of USN technology, we suggest a method and service of monitoring of road hazards combining the USN and the Geographic Information System(GIS). We conduct making the USN equipment relevant provisions surveys, making installation guidelines, construction system and real-time testing. This study is capable of the management of public facilities, real-time monitoring of accident and the environment data and is expected to be expanded to a 3D facility management combineded with BIM in the future.

Estimation of Soil Loss by Land Use in the Geum River Basin using RUSLE Model (RUSLE 모델을 이용한 금강 유역의 토지 이용별 토사유출량 추정)

  • Park, Jisang;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.619-625
    • /
    • 2006
  • Amount of soil loss is important information for the proper water quality management, In this research, annual average soil loss of the Geum River basin was estimated using RUSLE (Revised Universal Soil Loss Equation) and GIS (Geographic Information System). Input data were manipulated using ArcGIS ver. 8.3. From crop field which constitute 8.2% of the Geum River Basin, annual average soil loss was estimated as 53.6 ton/ha/year. From the rice paddy field which constitutes 20% of the Geum River Basin, soil loss was estimated as 33.5 ton/ha/year, In comparison, forestry area which constitutes 61.8% of the basin discharged 2.8 ton/ha/year, It could be known from this research that appropriate measures should be implemented to prevent excessive soil loss from the agricultural areas.

Geographic Information System and Remote Sensing in Soil Science (GIS와 원격탐사를 활용한 토양학 연구)

  • Hong, Suk-Young;Kim, Yi-Hyun;Choe, Eun-Young;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Park, Chan-Won;Jung, Kang-Ho;Hyun, Byung-Keun;Ha, Sang-Keun;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.684-695
    • /
    • 2010
  • Geographic information system (GIS) is being increasingly used for decision making, planning and agricultural environment management because of its analytical capacity. GIS and remote sensing have been combined with environmental models for many agricultural applications on monitoring of soils, agricultural water quality, microbial activity, vegetation and aquatic insect distribution. This paper introduce principles, vegetation indices, spatial data structure, spatial analysis of GIS and remote sensing in agricultural applications including terrain analysis, soil erosion, and runoff potential. National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) has a spatial database of agricultural soils, surface and underground water, weeds, aquatic insect, and climate data, and established a web-GIS system providing spatial and temporal variability of agricultural environment information since 2007. GIS-based interactive mapping system would encourage researchers and students to widely utilize spatial information on their studies with regard to agricultural and environmental problem solving combined with other national GIS database. GIS and remote sensing will play an important role to support and make decisions from a national level of conservation and protection to a farm level of management practice in the near future.

A Study of Realtime Geographic Information Transmission for the Mobile Mapping System (모바일매핑시스템에서의 실시간 지리정보 전송을 위한 연구)

  • Bae Sang-Keun;Park Young-Moo;Kim Byung-Guk
    • Spatial Information Research
    • /
    • v.13 no.1 s.32
    • /
    • pp.91-101
    • /
    • 2005
  • The Mobile Mapping System using the vehicle equipped the GPS, IMU, CCD Cameras is the effective system for the management of the road facilities, update of the digital map, and etc. If the geographic information which is acquired by the Mobile mapping System can be transmitted in realtime, users can process what they want using the latest data. In this research, the effective method was suggested for the transmission of the geographic information acquired by mobile mapping System such as position data, attitude data, and image data in the wireless internet environment in realtime.

  • PDF

A Study on Evaluation of the Priority Order about Framework Data Building (기본지리정보 구축 우선순위 평가에 관한 연구)

  • 김건수;최윤수;조성길;이상미
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.361-366
    • /
    • 2004
  • Geographic Information has been used widely for landuse and management, city plan, and environment and disaster management, etc., But geographic information has been built for individual cases using various methods. Therefore, the discordancy in data, double investment, confusion of use and difficulty of decision supporting system have been occurred. In order to solve these problems, national government is need to framework database. This framework database was enacted for building and use of National Geographic Information System and focused on basic plan of the second national geographic information system. Also, the framework database was selected of eight fields by NGIS laws and 19 detailed items through meeting of framework committee since 2002. In this research, The 19 detailed items( road, railroad, coastline, surveying control point etc.,) of framework database consider a Priority order, In the result of this research, the framework database is obtain to a priority order for building and the national government will carry effectively out a budget for the framework database building. Each of 19 detailed items is grouping into using the priority order of the framework database by AHP analysis method and verified items by decision tree analysis method. The one of the highest priority order items is a road, which is important for building, continuous renovation, and maintain management for use.

  • PDF

Automatic Extraction of Road Network using GDPA (Gradient Direction Profile Algorithm) for Transportation Geographic Analysis

  • Lee, Ki-won;Yu, Young-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.775-779
    • /
    • 2002
  • Currently, high-resolution satellite imagery such as KOMPSAT and IKONOS has been tentatively utilized to various types of urban engineering problems such as transportation planning, site planning, and utility management. This approach aims at software development and followed applications of remotely sensed imagery to transportation geographic analysis. At first, GDPA (Gradient Direction Profile Algorithm) and main modules in it are overviewed, and newly implemented results under MS visual programming environment are presented with main user interface, input imagery processing, and internal processing steps. Using this software, road network are automatically generated. Furthermore, this road network is used to transportation geographic analysis such as gamma index and road pattern estimation. While, this result, being produced to do-facto format of ESRI-shapefile, is used to several types of road layers to urban/transportation planning problems. In this study, road network using KOMPSAT EOC imagery and IKONOS imagery are directly compared to multiple road layers with NGI digital map with geo-coordinates, as ground truth; furthermore, accuracy evaluation is also carried out through method of computation of commission and omission error at some target area. Conclusively, the results processed in this study is thought to be one of useful cases for further researches and local government application regarding transportation geographic analysis using remotely sensed data sets.

  • PDF

Inundation Analysis on the Flood Plain in Ungauged Area Using Satellite Rainfall and Global Geographic Data: In the case of Tumen/Namyang Area in Duman-gang(Riv.) (위성강우와 글로벌 지형 자료를 이용한 미계측 지역 홍수터 침수모의 : 두만강 도문/남양 지역을 중심으로)

  • CHOI, Yun-Seok;KIM, Joo-Hun;KIM, Ji-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.1
    • /
    • pp.51-64
    • /
    • 2020
  • The purpose of this study is to present a method for quantitative analysis of flooding at the flood plain in an ungauged area using satellite rainfall and global geographic data. For this, flooding of the Tumen/Namyang area in the Duman-gang(Riv.) was simulated and the flood conditions were quantitatively analyzed. The IMERG data, a rainfall data derived from satellite images, was used as rainfall data. The GRM model was applied to the watershed runoff simulation, and the G2D model was applied to the flooding simulation of the Tumen/Namyang area. Flood event caused by Typhoon Lionrock in August 2016 was applied. Recorded peak discharge of the Tumen/Namyang region was used to verify the runoff simulation results. To verify the result of the inundation simulation, the flood situation collected through field survey and satellite image data before and after the flood were used. The peak flow rates by the runoff simulation and flood record were 7,639㎥/s and 7,630㎥/s, respectively, with a relative error of about 0.1%. In the flood simulation, the results were similar to the flooding ranges identified in the survey data and satellite images. And the changes of flooding depth and flooding time in the flood plain in Tumen/Namyang area could also be assessed. The methods and results of this study will be useful for the quantitative assessment of floods in the ungauged areas.