• Title/Summary/Keyword: geodesic lamination

Search Result 2, Processing Time 0.016 seconds

IDEAL CELL-DECOMPOSITIONS FOR A HYPERBOLIC SURFACE AND EULER CHARACTERISTIC

  • Sozen, Yasar
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.965-976
    • /
    • 2008
  • In this article, we constructively prove that on a surface S with genus g$\geq$2, there exit maximal geodesic laminations with 7g-7,...,9g-9 leaves. Thus, S can have ideal cell-decompositions (i.e., S can be (ideally) triangulated by maximal geodesic laminations) with 7g-7,...,9g-9 (ideal) 1-cells. Once there is a triangulation for a compact surface, the Euler characteristic for the surface can be calculated as the alternating sum F-E+V, where F, E, and V denote the number of faces, edges, and vertices, respectively. We also prove that the same formula holds for the ideal cell decompositions.

FOLIATIONS FROM LEFT ORDERS

  • Baik, Hyungryul;Hensel, Sebastian;Wu, Chenxi
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.699-715
    • /
    • 2022
  • We describe a construction which takes as an input a left order of the fundamental group of a manifold, and outputs a (singular) foliation of this manifold which is analogous to a taut foliation. We investigate this construction in detail in dimension 2, and exhibit connections to various problems in dimension 3.