• 제목/요약/키워드: geodesic convex

검색결과 6건 처리시간 0.019초

RELATIVE ISOPERIMETRIC INEQUALITY FOR MINIMAL SUBMANIFOLDS IN SPACE FORMS

  • Seo, Keomkyo
    • Korean Journal of Mathematics
    • /
    • 제18권2호
    • /
    • pp.195-200
    • /
    • 2010
  • Let C be a closed convex set in ${\mathbb{S}}^m$ or ${\mathbb{H}}^m$. Assume that ${\Sigma}$ is an n-dimensional compact minimal submanifold outside C such that ${\Sigma}$ is orthogonal to ${\partial}C$ along ${\partial}{\Sigma}{\cap}{\partial}C$ and ${\partial}{\Sigma}$ lies on a geodesic sphere centered at a fixed point $p{\in}{\partial}{\Sigma}{\cap}{\partial}C$ and that r is the distance in ${\mathbb{S}}^m$ or ${\mathbb{H}}^m$ from p. We make use of a modified volume $M_p({\Sigma})$ of ${\Sigma}$ and obtain a sharp relative isoperimetric inequality $$\frac{1}{2}n^n{\omega}_nM_p({\Sigma})^{n-1}{\leq}Vol({\partial}{\Sigma}{\sim}{\partial}C)^n$$, where ${\omega}_n$ is the volume of a unit ball in ${\mathbb{R}}^n$ Equality holds if and only if ${\Sigma}$ is a totally geodesic half ball centered at p.

A LOWER BOUND FOR THE CONVEXITY NUMBER OF SOME GRAPHS

  • Kim, Byung-Kee
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.185-191
    • /
    • 2004
  • Given a connected graph G, we say that a set EC\;{\subseteq}\;V(G)$ is convex in G if, for every pair of vertices x, $y\;{\in}\;C$, the vertex set of every x - y geodesic in G is contained in C. The convexity number of G is the cardinality of a maximal proper convex set in G. In this paper, we show that every pair k, n of integers with $2\;{\leq}k\;{\leq}\;n\;-\;1$ is realizable as the convexity number and order, respectively, of some connected triangle-free graph, and give a lower bound for the convexity number of k-regular graphs of order n with n > k+1.

볼록 다면체 단위 법선 벡터의 구면 보로노이 다이아그램을 계산하기 위한 선형시간 알고리즘 (A Linear-time Algorithm for Computing the Spherical Voronoi Diagram of Unit Normal Vectors of a Convex Polyhedron)

  • 김형석
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제27권10호
    • /
    • pp.835-839
    • /
    • 2000
  • 보로노이 다이아그램은 계산기하학에서 다양한 형태의 근접 문제를 해결함에 있어 중요한 역할을 하고 있다. 일반적으로 평면상의 n 개의 점에 의한 평면 보로노이 다이아그램 O(nlogn) 시간에 생성할 수 있으며 이 알고리즘의 시간 복잡도가 최적임이 밝혀져 있다. 본 논문에서는 특별한 관계를 갖는 단위 구면상의 점들에 대한 구면 상에서 정의되는 보로노이 다이아그램을 O(n)에 생성하는 알고리즘을 제시한다. 이때 주어진 구면상의 점들은 볼록 다면체의 단위 법선 벡터들의 종점에 해당되며, 구면 보로노이 다이아그램의 선분은 구면상의 geodesic으로 이루어진다.

  • PDF

DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • 대한수학회지
    • /
    • 제53권4호
    • /
    • pp.737-767
    • /
    • 2016
  • This paper concerns closed hypersurfaces of dimension $n{\geq}2$ in the hyperbolic space ${\mathbb{H}}_{\kappa}^{n+1}$ of constant sectional curvature evolving in direction of its normal vector, where the speed equals a power ${\beta}{\geq}1$ of the mean curvature. The main result is that if the initial closed, weakly h-convex hypersurface satisfies that the ratio of the biggest and smallest principal curvature at everywhere is close enough to 1, depending only on n and ${\beta}$, then under the flow this is maintained, there exists a unique, smooth solution of the flow which converges to a single point in ${\mathbb{H}}_{\kappa}^{n+1}$ in a maximal finite time, and when rescaling appropriately, the evolving hypersurfaces exponential convergence to a unit geodesic sphere of ${\mathbb{H}}_{\kappa}^{n+1}$.