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(A Linear-time Algorithm for Computing the Spherical Voronoi
Diagram of Unit Normal Vectors of a Convex Polyhedron)
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Abstract The Voronoi diagrams play a central role for solving a variety of proximity problems.

It is well-known that the Voronoi diagram of # sites in the plane can be computed in O(nlog »)

time, and this bound is optimal. In this paper, we show that a

special Voronoi diagram named as a

spherical Voronoi diagram, of # sites on the unit sphere can be computed in O(x) time, where these

sites correspond to the outward unit normal

1. Introduction

The Voronoi diagram is a natural and intuitively
appealing structure to solve a variety of proximity
Within the
it is applied to

problems appearing in several fields.
domain of the computer science,
solve geometric problems such as finding Euclidean
minimum spanning trees and closest points. The
planar Voronoi diagram of a set of points - called
sites - is a partition of the plane that assigns a
surrounding convex polygon of nearby points to
The straight-line dual of the
Voronoi diagram is called the Delaunay triangu-

each of the sites.

lation of S. In favor of the extensive applications

of the Voronoi diagrams and Delaunay triangula
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vectors of the faces of a convex polyvhedron.

tions, the problem of computing these structures

attention in recent
[5] showed that the Voronoi

diagram of = sites in the plane can be computed

has received considerable

decades. Shamos
in O(nlogn) time, and this bound is optimal. As

the specialization of a general problem to a
restricted class of data, Aggarwal et al. [1] solved
one of the outstanding open problems: construct the
Voronoi diagram of S in O(n) time, where S is
the set of vertices of a convex polygon. They also
showed that the technique can be used to reduce
the time complexity of several other problems [2].
The surface of a sphere has a different topology
from the plane, so it is hard to directly apply

Shamos’s algorithm to the surface. Brown
presented an O(nlog#) algorithm for computing the
spherical Voronoi diagram of #» points on the
surface of a sphere by using a 3D convex hull

algorithm [3].
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The Qnlogn) lower bound in ref. [2, 3] does not
apply when the input sites are spherical points
which correspond to the outward unit normal
vectors of the faces of a convex polyhedron. The
set of sites may be regarded as a dimensional
extension of the set of wvertices of a convex
polygon in ref. {1]. In this paper, we present an
O(n) algorithm for constructing a special Voronoi
diagram of the = spherical points, named as a
spherical Voronoi diagram. The spherical Voronoi
diagram of the set can be used to find the face of
polyhedron which has the best

reflexibility for a given light source.

a convex

The rest of this paper is organized in the
following manner : In Section 2, we first review
the point-plane duality which is the main idea of
that the

Voronoi diagram of S can be computed in O(»)

this paper and then show spherical
time, where S is the set of # outward unit normal
vectors of faces in a convex polyhedron. Finally,
we conclude this paper with some remarks in

Section 3.

2. Algorithm and Analysis

We start by reviewing some standard geometric
constructions. Suppose that we are given a set S
of n sites on the surface of the unit sphere S
For two distinct sites p.g € S, the spherical
dominance of p to g, denoted by sdom(p,q), is
defined as the subset of points on the surface of
the sphere being at least as close to p as to g¢.
Formally, sdom(p, q) = {x=S§? | &x,p)<8(x,q)}, where
&(x,y) is the geodesic between x and y. Clearly,
sdom(p,q) is a closed half sphere divided by the
perpendicular bisector of p and ¢. This bisector
separates all points on the surface of the sphere
closer to p from those closer to ¢ and will be
termed the separator of p and gq. The spherical

region, sreg(p)= HEQ msdom(p,a) of a site p=S, is

the portion of the surface of the sphere lying in all

of the spherical dominances of p over the

remaining sites in S. The # spherical regions form
a partition of the surface of the unit sphere. This

partition is called the Spherical Voronoi diagram,
SW(S), of the finite point set S.

Brown presented an O(nlogn) algorithm for
computing the spherical Voronoi diagram of =
[3]. His

consists of three major steps: The first step is to

points on the unit sphere algorithm

construct the convex hull of » points in O(nlogn)
time. The next step is to compute the spherical
Voronoi vertices. Let «; be the point on the sphere
that is equi-distant from the vertices of F, where
F; is a face of the convex hull. Then, w; is a
O(n) time to

compute all of the Voronoi vertices #;'s. The final

spherical Voronoi vertex. It takes

step is to connect the Voronoi vertices in  O(xn)
time : Two Voronoi vertices, u; and u; are
connected by an arc on a great circle (geodesic
arc) if and only if F; an F; share an edge.
Clearly, the time complexity of the first step
dominates those of the others. Hence, if the first
step can be done in ») time, then we can
construct the spherical Voronoi diagram in O(n)
time. We exploit the point-plane duality to achieve
this time bound when S is the set of points on the
Gauss sphere which correspond to the outward unit
normal vectors, denoted by »F;'s, of faces F;'s of
a convex polyhedron.

Consider a transformation that maps a point
p={(p1,p2.03) to a plane <p,x>=pix;+poxat, p3xs=1
and vice versa {4]. This transformation gives a
dual D of a polyhedron P : Every vertex v, of P
corresponds to a face Dv, of D, and every face F;
of P does to a vertex DF; of D. Without loss of
generality, we may assume that P contains the
origin in its interior. Otherwise, we can always
translate P to satisfy this assumption, since the
topology of P is translation-invariant. It is
well-known that D is also a convex polyhedron
containing the origin in its interior. Moreover, Du,
is a convex polygon for all v,EP.

For convenience, we relabel the faces containing
vy=(x, 2y in P so that they form a cycle

(Fo,Fri Fua-1), where each F,, is adjacent
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to F,;+1 and the second subscripts are taken
modulo 4 v, is transformed to a plane
o x>=x1+ VX +2,03=1.
Since #F,; is the unit normal vector of F,; of
P, the plane containing F,; is given by

nk,
ni

Therefore, DF,;=nF,;/d,; is a vertex of Du,

KnFy; x>=d,;,;, or < =1

corresponding to F,; of P. Furthermore,

_ Uk S I T,
o=l 2= 1o 2 g -

That is, the convex polygon Dy, corresponding
to a vertex v, of P is contained in the plane
(v x>=1 whose distance from the origin is
llwll.

Due to the point-plane duality, DF,;'s are the
vertices of the convex polygon Dv,, and the line
DF,; and DF, .|,

is an edge of Dv,. As shown in Fig. 1, the ray

segment joining two vertices,
from the origin to DF,; intersects the Gauss
sphere at #F, ;. Therefore, Dy, is projected onto
the sphere as a spherical region whose boundary
can be represented by a sequence of points
(F g0 0F e F ).

Fig. 1 Two projections! a projection of  Dr, onto
the Gauss sphere (solid arrows) and an
orthographic  projection of the closed
piecewise curve onto a plane parallel to Duv,

(dotted arrows)

Let H,; be the plane containing the origin, #F,

and #F, .+, 0</Kk H,; divides the spaceinto

two half-spaces, H},; and Hy, Let Hj,; be the

half-space containing Dv,. The intersection of

half-spaces H},, 0<j<k is a cone with the apex
at the origin. Therefore, the spherical region, that is
the projection of Dvw, onto the sphere, is the
intersection of the sphere and the cone. The
boundary of this region is represented by a
sequence of points

that »F,; and

(nF o, nF 1, -, nF 4 ,—1) such
nF,,+, are joined by a geodesic
arc for all 0<j<{k Moreover, the spherical region is
a simple spherical polygon on the sphere. Hence,
the sequence of the line segment joining =F,; and
nF e, 0<j<k, forms a éimple closed piecewise

linear curve. We show that its orthographic

projection onto a plane parallel to Dy, is a convex
polygon:

Lemma 1 The orthographic projection of the
closed piecewise linear curve (nF,o.nF, -, 0F,;; 1)

onto a plane parallel to Dv, is a convex polygon.

[Proof] We denote the projected image of the
closed plecewise linear curve by
(WFpgnFyponFue)), where nF,; 0<jck

is the projected image of =F,; Suppose that the
projection is not convex. Since it is a simple closed
curve, there would exist one or more vertices of
the projection contained in the interior of the
convex hull of the projection. Take any of such
vertices, say nF—h, for some 0<j<k Then, it must
be contained in the interior of the

(n Fia th,h,"Fh.c),

triangle
where 0<a{b{c<k The
inverse projection of the triangle onto the sphere
gives a spherical triangle (nF, ., nF, . nF, ), that
nF

contains as an interior point. When the

spherical triangle is transformed back onto the
plane containing Dv; DF,; lies in the interior of
the triangle (DF,,,DF, DF, ), that is completely
contained in Dv;. Thus, DF,; is an interior point

of Dv, which contradicts that Dv;, is a convex
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polygon. Hence, the result holds true. []

Aggarwal et. al [1] showed that the convex hull
of » points can be found in O(n) time if their
projections onto a plane are the vertices of a
nF,
their

convex polygon. By Lemma 1, the points
0<j<k,
convex hull can be constructed in O(k) time. The

satisfy this condition. Therefore,
plecewise linear curve enables for us to construct
the convex hull of #F;'s in O{(x) time.

Lemma 2

(nF 9. nF 4, nF , —y) consists

The closed piecewise linear curve
of a subset of
edges of the convex hull of wnF; for all i=1,2,---, n

[Proof] Since #F.'s lie on the Gauss sphere, all
of them are extreme points, ie., the vertices of the
convex hull of aF/'s. Since nF , ;€ {nF nFy -, nF,}
for all f)sj(k, nF,,'s are also extreme poinis.
We will be done if we show that the line segment
joining nF,; and #F,;+; is an edge of the convex
hull of =nF;’s.

Note that the projection of each face Dw, of the
dual D of the convex polyhedron P is a spherical
region (nF,q,nF ;. nF,;,-). This region is the
intersection of the Gauss sphere and the cone
bounded by the planes H,; for all 0<j<k The
geodesic arc connecting #»F,; and #»F, ;. lies on
H,; and so does the line segment joining them.
For every uv,eP, the cone CO, is well-defined, i.e.,

CO,=(H7,. The set of all these cones partitions
i

the sphere into = disjoint spherical regions. Any of
the spherical regions does not contain a spherical
image »F;, 1<i<n in its interior.

Suppose, for a contradiction, that a line segment
of the curve is not an edge of the convex hull of
nF;'s, say the line segment joining =nF,, and

nF, .« for some 0<Kk Then, it must be a
diagonal. Therefore, the line segment excepting its
nF,;, and completely

end points nF g 0y 1S

contained in the interior of the cone CO,. If we
project the line segment back to Dw,, it becomes a
diagonal of Dw,, which is a contradiction since the

inverse projection of the line segment is an edge of

the convex polyhedron Dp,. Hence, the result

follows immediately. []

i
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(c)
Fig. 2 (a) A pot, (b) its corresponding dual and (c)

its corresponding spherical Voronoi diagram

Now, we are ready to describe how to construct
the convex hull of the Gauss images #nF;'s of the

normal vectors of the faces of P in O(») time. By
Lemma 2, the set of all such curves, that result
from the faces of D, partitions the boundary of
the convex hull into = disjoint regions. Lemma 1

guarantees that the convex hull of each of these
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regions can be found in linear time. Therefore, the
convex hull of #»F,'s can be constructed in O(n)
time once all such curves are identified. The curves
are obtained in O(») time by simply projecting the
faces of D onto the Gauss sphere with the origin
as the projection center. Given the convex hull of
nF;'s, the second and third steps of Brown's
algorithm take care of the remainder to construct
the spherical Voronoi diagram of #F,s in O(n)
time. Fig. 2 shows a pot, its corresponding dual
and spherical Voronoi diagram.

Theorem 1 The convex hull of nF/s, 1<i<n,

can be found in O(n) time. Moreover, their
spherical Voronoi diagram can be constructed in

O(n).

3. Concluding Remarks

We presented a linear-time algorithm for

computing the Voronoi diagram of the set of
spherical points which correspond to outward unit
normal vectors of faces in a convex polyhedron.
We  applied

which is the main idea of our algorithm. The dual

a point-plane dual transformation

transformation is simple and powerful for
computing the Voronoi diagram of the set of points
possessing convexity. Moreover, based on the
point-plane duality and convexity, we are going to
find linear-time algorithm computing the 3D inner
and outer Voronoi

diagrams of a convex

polyhedron.
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