• 제목/요약/키워드: geochemical assessment

Search Result 63, Processing Time 0.021 seconds

A Study on the Distribution of Heavy Metal Concentrations in Marine Surface Sediments around Samcheonpo Power Plant (삼천포화력발전소 주변해역 표층퇴적물중의 중금속원소함량 분포 연구)

  • Lee, Doo-Ho;Lim, Ju-Hwan;Jeon, Byeong-Yeol;Jeong, Nyeon-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • An environmental geochemical survey of heavy metal distribution in marine surface sediments around the ocean of Samcheonpo coal-fired power plant was conducted to investigate the possibility of coal-ash leakage from ash pond and the associated heavy metal pollution in sedimental deposits due to the operation of the coal-fired power plant. The X-Ray Diffractometry (XRD) analysis showed that the main leakage point of coal-ash was limited to a single site of the first ash pond. It also appeared that the amounts of organic carbon and metal elements were positively correlated to the grain size distribution, and that Co, Cr, Cu, Fe, Ni, and Zn were bounded to organic ligands. However, the distributions of Cd, Hg, and Mn did not have any significant correlation with the sediment grain size and organic matters. In particular, the distribution of Cd appeared to be affected by the concentration of the carbonate materials in the study area.

  • PDF

Geochemical Contamination Assessment and Distribution Property Investigation of Heavy Metals, Arsenic, and Antimony Vicinity of Abandoned Mine (폐광산 인근지역에서 중금속, 비소, 안티모니의 지구화학적 오염도 평가 및 분산 특성 조사)

  • Han-Gyum Kim;Bum-Jun Kim;Myoung-Soo Ko
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.717-726
    • /
    • 2022
  • This study was conducted to assess the geochemical contamination degree of As, Cd, Cu, Pb, Sb, and Zn in the soil and water samples from an abandoned gold mine. Enrichment Factor (EF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were carried out to assess the geochemical contamination degree of the soil samples. Variations of sulfate and heavy metals concentration in water samples were determined to identify the geochemical distribution with respect to the distance from the mine tailing dam. Geochemical pollution indices indicated significant contaminated with As, Cd, Pb, and Zn in the soil samples that areas close to the mine tailing dam, while, Sb showed similar indices in all soil samples. These results indicated that the As, Cd, Pb, and Zn dispersion has occurred via anthropogenic sources, such as mining activities. In terms of water samples, anomalies in the concentrations of As, Cd, Zn, and SO42- was determined at specific area, in addition, the concentrations of the elements gradually decreased with distance. This result implies the heavy metals distribution in water has carried out by the weathering of sulfide minerals in the mine tailing and soil. The study area has been conducted the remediation of contaminated soil in the past, however, the geochemical dispersion of heavy metals was supposed to be occurred from the potential contamination source. Therefore, continuous monitoring of the soil and water is necessary after the completion of remediation.

Sedimentary Geochemical Characteristics and Environmental Impact of Sediments in Tamjin River and Doam Bay (탐진강 및 도암만 지역 퇴적물의 퇴적지구화학적 특성과 환경영향)

  • Hong, Jin-Taek;Na, Bum-Soo;Kim, Joo-Yong;Koh, Yeong-Koo;Youn, Seok-Tai;Shin, Sang-Eun;Kim, Hai-Gyoung;Moon, Byoung-Chan;Oh, Kang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.6
    • /
    • pp.393-405
    • /
    • 2007
  • To examine the sedimentary geochemical characteristics of sediment in the Tamjin River and Doam bay, the analysis was conducted, using the sample obtained in February 2000, on the grain size and the contents of metallic elements and organic carbon. The factors that influence the geochemical behavior of metallic elements in the surface sediment are grain size, organism, surrounding soil and $CaCO_3$. To find out the pollution level of metallic elements, the enrichment factor (EF) and the index of geoaccumulation ($I_{geo}$) were researched. The majority of metallic elements sustain their values in natural state. The elements such as K, Ba, Zr, etc. appear to be rich in some places. The EF and $I_{geo}$ of P, Cu, Zn, and Pb, which belong to toxic heavy metals, are partly related with man-made pollution. P and Cu have a high EF, Pb has a high $I_{geo}$ and Zn is high in both EF and $I_{geo}$. The low contents of P and Cu are not likely to be related with the pollution of water environment. However, given the development of relative pollution, the research and the management regarding the pollutants are needed. Because Pb, naturally enriched by geological characteristics, has a large influence on water environment along with Zn, the adequate measures against man-made pollution should be worked out.

Environmental Assessment of Heavy Metals Anna Abandoned Metalliferous Mine in Korea (국내 휴/폐광 금속황산 주변의 중금속 환경오염 평가)

  • 정명채;정문영;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.21-33
    • /
    • 2004
  • The objective of this study is to review of environmental assessment of heavy metals derived from various metalliferous mines in Korea. As a results of national wide research for heavy metal contaminations in the vicinity of metalleferous mines, the main contaminants are mine waste materials including tailings. From the materials, toxic elements including As, Cd, Cu, Pb and Zn can be dispersed into downstream through wind and water. Thus, soils around the mines contain elevated levels of those elements, which are over the guide values for environmental regulation of soils in Korea. Arsenic is one of the most important elements contaminated by mining activities, to a less extent, Cd, Cu, Pb and Zn. In spite of remediation works for some metal mines by the government, there are still lots of abandoned mines which are necessary for reclamation of mining sites. This study also includes that metal concentrations in soils and tailings can be varied upon various decomposition methods including 0.1N HC1 and aqua regia and sequential extraction scheme, with differences in each element, too. This may be due to geochemical characteristics of the elements, such as solubility, mobility and chemical forms in the geochemical environment. Finally, it is suggested that a certain organization should be runned by Korean government for management of abandoned mines.

Conceptual Geochemical Modelling of Long-term Hyperalkaline Groundwater and Rock Interaction (지구화학 모델을 이용한 장기간의 강알칼리성 지하수-암석의 반응 개념 모델링)

  • Choi, Byoung-Young;Yoo, Si-Won;Chang, Kwang-Soo;Kim, Geon-Young;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.273-281
    • /
    • 2007
  • Hyperalkaline groundwater formed by groundwater-cement components and its reaction with bedrock in a nuclear waste repository were simulated by geochemical modeling. The result of groundwater-cement components reaction showed that the pH of water was 13.3 and the precipitated minerals were Brucite, Katoite, Calcium Silicate Hydrate(CSH1.1), Ettringite, Hematite, and Portlandite. The result of interaction between such minerals and groundwater sampled in Gyeongju area also showed that the pH of groundwater reached 12.4. Interaction between such hyperalkaline groundwater and granite was simulated by kinetic model during $10^3$ years. This result showed that the final pH of groundwater reached 11.2 and the variation of pH was controlled by dissolution/precipitation of silicate and CSH minerals. Groundwater quality was also determined by dissolution/precipitation of silicate, CSH, oxide minerals. Our results show that geochemical modeling of long-term hyperalkaline groundwater and rock interaction can contribute to the safety assessment of engineered barrier by predicting geochemical condition in repository site.

  • PDF

Geochemical Modeling on Water-caprock-gas Interactions within a CO2 Injected in the Yeongil Group, Pohang Basin, Korea (포항분지 영일층군 내 이산화탄소 주입에 의한 물-덮개암-가스 반응에 대한 지화학적 모델링)

  • Kim, Seon-ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.69-76
    • /
    • 2021
  • This study is to identify the mineralogical properties of caprock samples from drilling cores of the Pohang basin, which is the research area for the demonstration-scale CO2 storage project in Korea. The interaction of water-rock-gas that can occur due to CO2 injection was identified using geochemical modeling. Results of mineralogical studies, together with petrographic data of caprock and data on the physicochemical parameters of pore water were used for geochemical modeling. Modelling was carried out using the The Geochemist's Workbench 14.0.1 geochemical simulator. Two steps of modeling enabled prediction of immediate changes in the caprocks impacted by the first stage of CO2 injection and the assessment of long-term effects of sequestration. Results of minerlaogical analysis showed that the caprock samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, kaolinite and montmollonite. After the injection of carbon dioxide, the porosity of the caprock increased due to the dissolution of calcite, and dawsonite and chalcedony were precipitated as a result of the dissolution of albite and k-feldspar. In the second step after the injection was completed, the precipitation of dawsonite and chalcedony occurred as a result of dissolution of calcite and albite, and the pH was increased due to this reaction. Results of these studies are expected to be used as data to quantitatively evaluate the efficiency of mineral trapping capture in long-term storage of carbon dioxide.

Assessment of Natural Attenuation Processes in the Groundwater Contaminated with Trichloroethylene (TCE) Using Multi-Species Reactive Transport Modeling (다성분 반응 이동 모델링을 이용한 트리클로로에틸렌(TCE)으로 오염된 지하수에서의 자연저감 평가)

  • Jeen, Sung-Wook;Jun, Seong-Chun;Kim, Rak-Hyeon;Hwang, Hyoun-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.101-113
    • /
    • 2016
  • To properly manage and remediate groundwater contaminated with chlorinated hydrocarbons such as trichloroethylene (TCE), it is necessary to assess natural attenuation processes of contaminants in the aquifer along with investigation of contamination history and aquifer characterization. This study evaluated natural attenuation processes of TCE at an industrial site in Korea by delineating hydrogeochemical characteristics along the flow path of contaminated groundwater, by calculating reaction rate constants for TCE and its degradation products, and by using geochemical and reactive transport modeling. The monitoring data showed that TCE tended to be transformed to cis-1,2-dichloroethene (cis-1,2-DCE) and further to vinyl chloride (VC) via microbial reductive dechlorination, although the degree was not too significant. According to our modeling results, the temporal and spatial distribution of the TCE plume suggested the dominant role of biodegradation in attenuation processes. This study can provide a useful method for assessing natural attenuation processes in the aquifer contaminated with chlorinated hydrocarbons and can be applied to other sites with similar hydrological, microbiological, and geochemical settings.

Evaluation of Americium Solubility in Synthesized Groundwater: Geochemical Modeling and Experimental Study at Over-Saturation Conditions

  • Hee-Kyung Kim;Hye-Ryun Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.399-410
    • /
    • 2022
  • The solubility and species distribution of radionuclides in groundwater are essential data for the safety assessment of deep underground spent nuclear fuel (SNF) disposal systems. Americium is a major radionuclide responsible for the long-term radiotoxicity of SNF. In this study, the solubility of americium compounds was evaluated in synthetic groundwater (SynDB3), simulating groundwater from the DB3 site of the KAERI Underground Research Tunnel. Geochemical modeling was performed using the ThermoChimie_11a thermochemical database. Concentration of dissolved Am(III) in Syn-DB3 in the pH range of 6.4-10.5 was experimentally measured under over-saturation conditions by liquid scintillation counting over 70 d. The absorption spectra recorded for the same period suggest that Am(III) colloidal particles formed initially followed by rapid precipitation within 2 d. In the pH range of 7.5-10.5, the concentration of dissolved Am(III) converged to approximately 2×10-7 M over 70 d, which is comparable to that of the amorphous AmCO3OH(am) according to the modeling results. As the samples were aged for 70 d, a slow equilibrium process occurred between the solid and solution phases. There was no indication of transformation of the amorphous phase into the crystalline phase during the observation period.

Evaluation of Heavy Metal Contamination in Intertidal Surface Sediments of Coastal Islands in the Western Part of Jeollanam Province Using Geochemical Assessment Techniques (지화학적 평가기법을 이용한 전남 서해 도서갯벌 퇴적물내 중금속 오염도 평가)

  • Hwang, Dong-Woon;Kim, Seong-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.772-784
    • /
    • 2011
  • We measured grain size, organic matter, and metallic elements (Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As) in intertidal sediments collected from six islands in the western part of Jellanam Province in order to evaluate heavy metal contamination in the tidal flat sediments of coastal islands. The evaluation of metal contamination was carried out using geochemical assessment techniques such as sediment quality guidelines (SQGs), enrichment factor (EF), and geoaccumulation index ($I_{geo}$). Surface sediments were classified into four sedimentary facies: sand, gravelly muddy sand, slightly gravelly mud, and silt. The concentrations of heavy metals in intertidal sediments from Jaeun, Amtae, Biguem, and Docho islands showed good positive correlations with mean grain size and ignition loss, indicating that the concentrations of metallic elements in these sediments were dependent on grain size and the organic matter content. The concentrations of heavy metals in sediments from almost all of the stations were lower than two criterion values proposed by the National Oceanic and Atmospheric Administration (NOAA) in the United States. Based on the EF and $I_{geo}$ results, surface sediments were a little polluted for Cr and were moderately polluted for As. Our results suggest that more intensive studies are necessary in the future in order to determine the major source of As in intertidal sediment and to evaluate the As pollution level in macrobenthos.

Characteristics of Nitrate Contamination of Groundwater - Case Study of Ogcheon Area - (지하수의 질산염 오염 특성 - 옥천지역 사례 연구 -)

  • Park, Ho-Rim;Kim, Myeong-Kyun;Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.87-98
    • /
    • 2015
  • Geochemical characteristics, water quality, $NO_3{^-}$ contamination and the origin of $NO_3{^-}$ were analyzed for the groundwater located at Ogcheon, Korea. The water qualities were weakly acidic to weakly alkalic and redox potentials indicated reduction condition. Compared to granitic rocks, metamorphic sedimentary rocks with intercalations of limestones and dolomites tended to be more effectively dissolved, resulting in higher pH and higher concentrations of dissolved ingredients. Contamination of heavy metals was not revealed. Geochemical reactions of carbonate rocks and influxes of artificial contamination ingredients seemed to simultaneously determine the geochemical characteristics and water qualities in the study area. From the results of ${\delta}^{15}N$ isotope analysis, the origin of $NO_3{^-}$ was estimated to be influenced dominantly by agricultural activities and human feces and urine.