• Title/Summary/Keyword: genomic stability

Search Result 60, Processing Time 0.029 seconds

Population diversity, admixture, and demographic trend of the Sumba Ongole cattle based on genomic data

  • Pita Sudrajad;Hartati Hartati;Bayu Dewantoro Putro Soewandi;Saiful Anwar;Angga Ardhati Rani Hapsari;Tri Satya Mastuti Widi;Sigit Bintara;Dyah Maharani
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.591-599
    • /
    • 2024
  • Objective: Sumba Ongole (SO) cattle are valuable breed due to their important role in the development of Indonesian cattle. Despite rapid advances in molecular technology, no genomic studies on SO cattle have been conducted to date. The aim of this study is to provide genomic profile related to the population diversity, admixture, and demographic trends of SO cattle. Methods: Genomic information was gathered from 79 SO cattle using the Illumina Bovine SNP50 v3 Beadchip, and for comparative purposes, additional genotypes from 209 cattle populations worldwide were included. The expected and observed heterozygosity, inbreeding coefficient, pairwise fixation indices between-population, and Nei's genetic distance were examined. Multidimensional scaling, admixture, and treemix analyses were used to investigate the population structure. Based on linkage disequilibrium and effective population size calculations, the demographic trend was observed. Results: The findings indicated that the genetic diversity of SO cattle was similar to that of other indicine breeds. SO cattle were genetically related to indicines but not to taurines or Bali cattle. The study further confirmed the close relationship between SO, Ongole, and Nellore cattle. Additionally, a small portion of the Ongole mixture were identified dominant in the SO population at the moment. The study also discovered that SO and Bali cattle (Bos javanicus) could have been ancestors in the development of Ongole Grade cattle, which corresponds to the documented history of Ongolization. Our finding indicate that SO cattle have maintained stability and possess unique traits separate from their ancestors. Conclusion: In conclusion, the genetic diversity of the SO cattle has been conserved as a result of the growing significance of the present demographic trend. Consistent endeavors are necessary to uphold the fitness of the breed.

Expression, Purification and Characterization of the BLM binding region of human Fanconi Anemia Group J Protein

  • Yeom, Kyuho;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.22-26
    • /
    • 2016
  • FANCJ is a DNA helicase which contributes genome stability by resolving G-quadruplex DNA from 5' to 3' direction. In addition to main ATPase helicase core, FANCJ has the protein binding region at its C-terminal part. BRCA1 and BLM are the binding partner of FANCJ and these protein-protein interactions contribute genomic stability and the proper response to replication stress. As the first attempt for studying FANCJ-BLM interaction, we prepared BLM binding region of FANCJ and characterized with CD and NMR spectroscopy. FANCJ (881-941) with N-ter 6xHis was purified as the oligomer. Secondary structure prediction based on CD data revealed that FANCJ (881-941) composed with ${\beta}$ sheet, turn and coils.$^1H-^{15}N$ HSQC spectra showed nonhomogeneous peak intensities with less number of peaks comparing than the number of amino acids in the construct. It indicated that optimization should be necessary for detailed further structural studies.

Critical Factors to High Thermostability of an ${\alpha}$-Amylase from Hyperthermophilic Archaeon Thermococcus onnurineus NA1

  • Lim, Jae-Kyu;Lee, Hyun-Sook;Kim, Yun-Jae;Bae, Seung-Seob;Jeon, Jeong-Ho;Kang, Sung-Gyun;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1242-1248
    • /
    • 2007
  • Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to ${\alpha}$-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the ${\alpha}$-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at $80^{\circ}C$ and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life ($t_{1/2}$) values of 10 min at $90^{\circ}C$, despite the high similarity to ${\alpha}$-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermo stability. The presence of $Ca^{2+}$ seemed to be critical, significantly changing $t_{1/2}$ at $90^{\circ}C$ to 153 min by the addition of 0.5 mM $Ca^{2+}$. On the other hand, the thermostability was not enhanced by the addition of $Zn^{2+}$ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermo stability, indicating that the residues involved in metal binding is very critical for the thermostability.

Specific Gene Silencing by Single Stranded Large Circular Antisense Molecules

  • Park, Jong-Gu
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.65-73
    • /
    • 2004
  • I report that single-stranded antisense as a part of large circular (LC-) genomic DNA of recombinant M13 phage exhibits enhanced stability, sequence specific antisense activity, and no need for target site search. A cDNA fragment (708 bp) of rat TNF-$\alpha$ was inserted into a phagemid vector, and TNF-$\alpha$ antisense molecules (TNF$\alpha$-LCAS) were produced as single-stranded circular DNA. When introduced into a rat monocyte/macrophage cell line, WRT7/P2, TNF$\alpha$-LCAS was able to ablate LPS-induced TNF-$\alpha$ mRNA to completion. The antisense effect of TNF$\alpha$-LCAS was shown to be sequence-specific because expressions of three control genes ($\beta$-actin, GAPDH and IL-1$\beta$) were not significantly altered by the antisense treatment. Further, TNF$\alpha$-LCAS was found to be highly efficacious as only 0.1 $\mu$g (0.24 nM) of TNF$\alpha$-LCAS was sufficient to block TNF-$\alpha$ expression in 1$\times10^5$ WRT7/P2 cells. I have also observed specific antisense activity in reduction of NF-$\kappa$B gene expression. The results suggest that an antisense sequence as a part of single-stranded circular genomic DNA has a specific antisense activity.

  • PDF

Aroclor 1254 May Induce Common DNA Effects in Developing Paralichthys olivaceus Embryos and Larvae

  • Min, Eun Young;Kang, Ju Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.461-469
    • /
    • 2014
  • Polychlorinated biphenyls (PCBs) are persistent pollutants in aquatic environments, often causing the decline or disappearance of wild populations. In this study, we used a random amplified polymorphic DNA (RAPD) assay to evaluate the effects on the genomic DNA of olive flounder embryo and larval stages of exposure to Aroclor 1254 at concentrations of 1, 5, 10, 20, and $40{\mu}g/L$. We compared RAPD fingerprints of exposed and non-exposed samples. Polymorphisms were revealed as the presence and/or absence of DNA fragments between the two samples. A dose-dependent increase in the number of polymorphic bands was observed with Aroclor 1254 treatment. Also, RAPD profiles of animals exposed to Aroclor 1254 exhibited an increase in the frequency values (FV) compared to the control. A phenogram constructed using neighbor-joining method indicated that genomic template stability in developing embryo and larval stages was significantly affected at ${\geq}5{\mu}g/L$. This study suggested that DNA polymorphisms detected by RAPD analysis could be used as an investigative tool for environmental toxicology and as a useful biomarker in early life stages for the detection of potential genotoxicants.

Isolation of New CHO Cell Mutants Defective in CMP-Sialic Acid Biosynthesis and Transport

  • Shin, Dong-Jun;Kang, Ji Young;Kim, Youn Uck;Yoon, Joong Sik;Choy, Hyon E;Maeda, Yusuke;Kinoshita, Taroh;Hong, Yeongjin
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.343-352
    • /
    • 2006
  • Sialic acid is a sugar typically found at the N-glycan termini of glycoproteins in mammalian cells. Lec3 CHO cell mutants are deficient in epimerase activity, due to a defect in the gene that encodes a bifunctional UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Sialic acid modification on the cell surface is partially affected in these cells. We have mutagenized Lec3 CHO cells and isolated six mutants (termed C2m) deficient in the cell surface expression of polysialic acid (PSA). Mutant C2m9 was partially defective in expression of cell-surface PSA and wheat germ agglutinin (WGA) binding, while in the other five mutants, both cell-surface PSA and WGA binding were undetectable. PSA expression was restored by complementation with the gene encoding the CMP-sialic acid transporter (CST), indicating that CST mutations were responsible for the phenotypes of the C2m cells. We characterized the CST mutations in these cells by Northern blotting and RT-PCR. C2m9 and C2m45 carried missense mutations resulting in glycine to glutamate substitutions at amino acids 217 (G217E) and 256 (G256E), respectively. C2m13, C2m39 and C2m31 had nonsense mutations that resulted in decreased CST mRNA stability, and C2m34 carried a putative splice site mutation. PSA and CD15s expression in CST-deficient Lec2 cells were partially rescued by G217E CST, but not by G256E CST, although both proteins were expressed at similar levels, and localized to the Golgi. These results indicate that the novel missense mutations isolated in this study affect CST activity.

Tumour Suppressor Mechanisms in the Control of Chromosome Stability: Insights from BRCA2

  • Venkitaraman, Ashok R.
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.95-99
    • /
    • 2014
  • Cancer is unique amongst human diseases in that its cellular manifestations arise and evolve through the acquisition of somatic alterations in the genome. In particular, instability in the number and structure of chromosomes is a near-universal feature of the genomic alterations associated with epithelial cancers, and is triggered by the inactivation of tumour suppressor mechanisms that preserve chromosome integrity in normal cells. The nature of these mechanisms, and how their inactivation promotes carcinogenesis, remains enigmatic. I will review recent work from our laboratory on the tumour suppressor BRCA2 that addresses these issues, focusing on new insights into cancer pathogenesis and therapy that are emerging from improved understanding of the molecular basis of chromosomal instability in BRCA2-deficient cancer cells.

Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe

  • Park, Jaehong;Lee, Dong-Hyun
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.181-190
    • /
    • 2020
  • Protein phosphatase 4 (PP4), one of serine/threonine phosphatases, is involved in many critical cellular pathways, including DNA damage response (DNA repair, cell cycle regulation, and apoptosis), tumorigenesis, cell migration, immune response, stem cell development, glucose metabolism, and diabetes. PP4 has been steadily studied over the past decade about wide spectrum of physiological activities in cells. Given the many vital functions in cells, PP4 has great potential to develop into the finding of key working mechanisms and effective treatments for related diseases such as cancer and diabetes. In this review, we provide an overview of the cellular and molecular mechanisms by which PP4 impacts and also discuss the functional significance of it in cell health.

RECOMMENDED DIETARY ALLOWANCES FOR GENOMIC STABILITY

  • Fenech, Michael
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.9-9
    • /
    • 2001
  • Several micronutrients (vitamins and minerals) are required as co-factors in DNA synthesis, DNA repair, DNA methylation and apoptosis. Some notable examples include (a) folic acid and vitamin B12 required for maintenance methylation of DNA and the synthesis of dTTP from dUTP, thus prevent the misincorporation of uracil into DNA, a highly mutagenic and chromosome-breaking event, (b) niacin, is essential in the form of the coenzymes NAD and NADP which act as a substrate for polyADPribose polymerase (PARP), an enzyme thought to facilitate efficient DNA repair and telomere length regulation and (c) zinc, apart from its antioxidant role as a co-factor in Cu/Zn SOD, it is required in its stabilizing role of the DNA-binding domain of p53 (residues 102-292) and thus is essential for apoptotic response to DNA damage. (omitted)

  • PDF

Cloning and Characterization of Xylanase Gene from Bacillus licheniformis NBL420 (Bacillus licheniformis NBL420 유래의 Xylanase 유전자의 클로닝과 특성 검토)

  • Hong, In-Pyo;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.169-176
    • /
    • 2009
  • The gene encoding endoxylanase (xylS) was isolated from a genomic library of Bacillus licheniformis NBL420. Two positive clones, which harbor 1.5 kb and 0.8 kb inserts respectively, were screened on RBB dyed-xylan plates and the recombinant plasmids were named as pBX3 and pBX5. The nucleotide sequencings of two inserts revealed the existence of common 639 bp of open reading frame which encode 232 amino acids. The xylS gene was successfully subcloned into pET22b(+) vector and overexpressed. Enzymatic properties including optimum pH, optimum temp, thermostability and pH stability were investigated. Activity staining of XylS was identical with that of original Bacillus licheniformis NBL420.

  • PDF