Isolation of New CHO Cell Mutants Defective in CMP-Sialic Acid Biosynthesis and Transport

  • Shin, Dong-Jun (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School) ;
  • Kang, Ji Young (Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University) ;
  • Kim, Youn Uck (Division of Applied Biological Sciences, Sunmoon University) ;
  • Yoon, Joong Sik (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School) ;
  • Choy, Hyon E (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School) ;
  • Maeda, Yusuke (Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University) ;
  • Kinoshita, Taroh (Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University) ;
  • Hong, Yeongjin (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School)
  • Received : 2006.09.20
  • Accepted : 2006.10.31
  • Published : 2006.12.31

Abstract

Sialic acid is a sugar typically found at the N-glycan termini of glycoproteins in mammalian cells. Lec3 CHO cell mutants are deficient in epimerase activity, due to a defect in the gene that encodes a bifunctional UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Sialic acid modification on the cell surface is partially affected in these cells. We have mutagenized Lec3 CHO cells and isolated six mutants (termed C2m) deficient in the cell surface expression of polysialic acid (PSA). Mutant C2m9 was partially defective in expression of cell-surface PSA and wheat germ agglutinin (WGA) binding, while in the other five mutants, both cell-surface PSA and WGA binding were undetectable. PSA expression was restored by complementation with the gene encoding the CMP-sialic acid transporter (CST), indicating that CST mutations were responsible for the phenotypes of the C2m cells. We characterized the CST mutations in these cells by Northern blotting and RT-PCR. C2m9 and C2m45 carried missense mutations resulting in glycine to glutamate substitutions at amino acids 217 (G217E) and 256 (G256E), respectively. C2m13, C2m39 and C2m31 had nonsense mutations that resulted in decreased CST mRNA stability, and C2m34 carried a putative splice site mutation. PSA and CD15s expression in CST-deficient Lec2 cells were partially rescued by G217E CST, but not by G256E CST, although both proteins were expressed at similar levels, and localized to the Golgi. These results indicate that the novel missense mutations isolated in this study affect CST activity.

Keywords

Acknowledgement

Supported by : Ministry of Commerce, Industry and Energy (MOCIE), Ministry of Health & Welfare of the Republic of Korea

References

  1. Abeijon, C., Mandon, E. C., and Hirschberg, C. B. (1997) Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus. Trends Biochem. Sci., 22, 203−207
  2. Alexander, D. A. and Dimock, K. (2002) Sialic acid functions in enterovirus 70 binding and infection. J. Virol., 76, 11265−11272
  3. Angata, T. and Varki, A. (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev., 102, 439−469 https://doi.org/10.1021/cr000407m
  4. Antoine, T., Priem, B., Heyraud, A., Greffe, L., Gilbert, M., et al. (2003) Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered Escherichia coli. Chembiochemistry 4, 406−412 https://doi.org/10.1002/cbic.200200540
  5. Aoki, K., Ishida, N., and Kawakita, M. (2001) Substrate recognition by UDP-galactose and CMP-sialic acid transporters. Different sets of transmembrane helices are utilized for the specific recognition of UDP-galactose and CMP-sialic acid. J. Biol. Chem. 276, 21555−21561 https://doi.org/10.1074/jbc.M101462200
  6. Aoki, K., Sun-Wada, G. H., Segawa, H., Yoshioka, S., Ishida, N., et al. (1999) Expression and activity of chimeric molecules between human UDP-galactose transporter and CMP-sialic acid transporter. J. Biochem. (Tokyo) 126, 940−950 https://doi.org/10.1093/oxfordjournals.jbchem.a022538
  7. Bresalier, R. S., Ho, S. B., Schoeppner, H. L., Kim, Y. S., Sleisenger, M. H., et al. (1996) Enhanced sialylation of mucinassociated carbohydrate structures in human colon cancer metastasis. Gastroenterology 110, 1354−1367
  8. Durbec, P. and Cremer, H. (2001) Revisiting the function of PSA-NCAM in the nervous system. Mol. Neurobiol. 24, 53−64 https://doi.org/10.1385/MN:24:1-3:053
  9. Eckhardt, M. and Gerardy-Schahn, R. (1997) Molecular cloning of the hamster CMP-sialic acid transporter. Eur. J. Biochem. 248, 187−192 https://doi.org/10.1111/j.1432-1033.1997.00187.x
  10. Eckhardt, M., Muhlenhoff, M., Bethe, A., Koopman, J., Frosch, M., et al. (1995) Molecular characterization of eukaryotic polysialyltransferase-1. Nature 373, 715−718 https://doi.org/10.1038/373715a0
  11. Eckhardt, M., Muhlenhoff, M., Bethe, A., and Gerardy-Schahn, R. (1996) Expression cloning of the Golgi CMP-sialic acid transporter. Proc. Natl. Acad. Sci. USA 93, 7572−7576
  12. Eckhardt, M., Gotza, B., and Gerardy-Schahn, R. (1998) Mutants of the CMP-sialic acid transporter causing the Lec2 phenotype. J. Biol. Chem. 273, 20189−20195 https://doi.org/10.1074/jbc.273.32.20189
  13. Eckhardt, M., Gotza, B., and Gerardy-Schahn, R. (1999) Membrane topology of the mammalian CMP-sialic acid transporter. J. Biol. Chem. 274, 8779−8787 https://doi.org/10.1074/jbc.274.13.8779
  14. Effertz, K., Hinderlich, S., and Reutter, W. (1999) Selective loss of either the epimerase or kinase activity of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase due to site-directed mutagenesis based on sequence alignments. J. Biol. Chem. 274, 28771−28778 https://doi.org/10.1074/jbc.274.40.28771
  15. Eisenberg, I., Avidan, N., Potikha, T., Hochner, H., Chen, M., et al. (2001) The UDP-N-acetylglucosamine 2-epimerase/Nacetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat. Genet. 29, 83−87 https://doi.org/10.1038/ng718
  16. Frosch, M., Gorgen, I., Boulnois, G. J., Timmis, K. N., and Bitter- Suermann, D. (1985) NZB mouse system for production of monoclonal antibodies to weak bacterial antigens: isolation of an IgG antibody to the polysaccharide capsules of Escherichia coli K1 and group B meningococci. Proc. Natl. Acad. Sci. USA 82, 1194−1198
  17. Gorelik, E., Xu, F., Henion, T., Anaraki, F., and Galili, U. (1997) Reduction of metastatic properties of BL6 melanoma cells expressing terminal fucose(alpha)1-2-galactose after alpha1,2- fucosyltransferase cDNA transfection. Cancer Res. 57, 332−336
  18. Harvey, B. E. and Thomas, P. (1993) Inhibition of CMP-sialic acid transport in human liver and colorectal cancer cell lines by a sialic acid nucleoside conjugate (KI-8110). Biochem. Biophys. Res. Commun. 190, 571−575 https://doi.org/10.1006/bbrc.1993.1086
  19. Harvey, B. E., Toth, C. A., Wagner, H. E., Steele, G. D., Jr., and Thomas, P. (1992) Sialyltransferase activity and hepatic tumor growth in a nude mouse model of colorectal cancer metastases. Cancer Res. 52, 1775−1779
  20. Hinderlich, S., Stasche, R., Zeitler, R., and Reutter, W. (1997) A bifunctional enzyme catalyzes the first two steps in Nacetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/ N-acetylmannosamine kinase. J. Biol. Chem. 272, 24313−24318 https://doi.org/10.1074/jbc.272.39.24313
  21. Hirschberg, C. B. (1996) Transporters of nucleotides and nucleotide derivatives in the endoplasmic reticulum and Golgi apparatus. Soc. Gen. Physiol. Ser. 51, 105−120
  22. Hong, Y. and Stanley, P. (2003) Lec3 Chinese hamster ovary mutants lack UDP-N-acetylglucosamine 2-epimerase activity because of mutations in the epimerase domain of the Gne gene. J. Biol. Chem. 278, 53045−53054 https://doi.org/10.1074/jbc.M309967200
  23. Hong, Y., Ohishi, K., Inoue, N., Kang, J. Y., Shime, H., et al. (2002) Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin. EMBO J. 21, 5047−5056 https://doi.org/10.1093/emboj/cdf508
  24. Hong, Y., Kang, J. Y., Kim, Y. U., Shin, D. J., Choy, H. E., et al. (2005) New mutant Chinese hamster ovary cell representing an unknown gene for attachment of glycosylphosphatidylinositol to proteins. Biochem. Biophys. Res. Commun. 335, 1060−1069 https://doi.org/10.1016/j.bbrc.2005.07.177
  25. Kayashima, T., Matsuo, H., Satoh, A., Ohta, T., Yoshiura, K., et al. (2002) Nonaka myopathy is caused by mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase gene (GNE). J. Hum. Genet. 47, 77−79 https://doi.org/10.1007/s100380200004
  26. Keppler, O. T., Hinderlich, S., Langner, J., Schwartz-Albiez, R., Reutter, W., et al. (1999) UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284, 1372−1376 https://doi.org/10.1126/science.284.5418.1372
  27. Kojima, N., Tachida, Y., and Tsuji, S. (1998) Alpha 1,6-linked fucose affects the expression and stability of polysialic acidcarrying glycoproteins in Chinese hamster ovary cells. J. Biochem. (Tokyo) 124, 726−737 https://doi.org/10.1093/oxfordjournals.jbchem.a022173
  28. Kronis, K. A. and Carver, J. P. (1985) Wheat germ agglutinin dimers bind sialyloligosaccharides at four sites in solution: proton nuclear magnetic resonance temperature studies at 360 MHz. Biochemistry 24, 826−833
  29. Lawrence, S. M., Huddleston, K. A., Pitts, L. R., Nguyen, N., Lee, Y. C., et al. (2000) Cloning and expression of the human N-acetylneuraminic acid phosphate synthase gene with 2- keto-3-deoxy-D-glycero-D-galacto-nononic acid biosynthetic ability. J. Biol. Chem. 275, 17869−17877 https://doi.org/10.1074/jbc.M000217200
  30. Maquat, L. E. (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell. Biol. 5, 89−99
  31. Martinez-Duncker, I., Dupre, T., Piller, V., Piller, F., Candelier, J. J., et al. (2005) Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood 105, 2671−2676 https://doi.org/10.1182/blood-2004-09-3509
  32. Matrosovich, M. and Klenk, H. D. (2003) Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Rev. Med. Virol. 13, 85−97 https://doi.org/10.1002/rmv.372
  33. Miyazaki, K., Ohmori, K., Izawa, M., Koike, T., Kumamoto, K., et al. (2004) Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin- like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers. Cancer Res. 64, 4498−4505 https://doi.org/10.1158/0008-5472.CAN-03-3614
  34. Monsigny, M., Roche, A. C., Sene, C., Maget-Dana, R., and Delmotte, F. (1980) Sugar-lectin interactions: how does wheatgerm agglutinin bind sialoglycoconjugates- Eur. J. Biochem. 104, 147−153 https://doi.org/10.1111/j.1432-1033.1980.tb04410.x
  35. Munster, A. K., Eckhardt, M., Potvin, B., Muhlenhoff, M., Stanley, P., et al. (1998) Mammalian cytidine 5′-monophosphate N-acetylneuraminic acid synthetase: a nuclear protein with evolutionarily conserved structural motifs. Proc. Natl. Acad. Sci. USA 95, 9140−9145
  36. Oelmann, S., Stanley, P., and Gerardy-Schahn, R. (2001a) Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDP-galactose and CMP-sialic acid transporters. J. Biol. Chem. 276, 26291−26300 https://doi.org/10.1074/jbc.M011124200
  37. Oelmann, S., Stanley, P., and Gerardy-Schahn, R. (2001b) Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDP-galactose and CMP-sialic acid transporters. J. Biol. Chem. 276, 26291−26300 https://doi.org/10.1074/jbc.M011124200
  38. Ono, K., Tomasiewicz, H., Magnuson, T., and Rutishauser, U. (1994) N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13, 595−609 https://doi.org/10.1016/0896-6273(94)90028-0
  39. Potvin, B., Raju, T. S., and Stanley, P. (1995) Lec32 is a new mutation in Chinese hamster ovary cells that essentially abrogates CMP-N-acetylneuraminic acid synthetase activity. J. Biol. Chem. 270, 30415−30421 https://doi.org/10.1074/jbc.270.51.30415
  40. Saitoh, O., Wang, W. C., Lotan, R., and Fukuda, M. (1992) Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J. Biol. Chem. 267, 5700−5711
  41. Santer, U. V., DeSantis, R., Hard, K. J., van Kuik, J. A., Vliegenthart, J. F., et al. (1989) N-linked oligosaccharide changes with oncogenic transformation require sialylation of multiantennae. Eur. J. Biochem. 181, 249−260 https://doi.org/10.1111/j.1432-1033.1989.tb14719.x
  42. Schachner, M. (1997) Neural recognition molecules and synaptic plasticity. Curr. Opin. Cell Biol. 9, 627−634
  43. Schwarzkopf, M., Knobeloch, K. P., Rohde, E., Hinderlich, S., Wiechens, N., et al. (2002) Sialylation is essential for early development in mice. Proc. Natl. Acad. Sci. USA 99, 5267−5270
  44. Seppala, R., Lehto, V. P., and Gahl, W. A. (1999) Mutations in the human UDP-N-acetylglucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am. J. Hum. Genet. 64, 1563−1569 https://doi.org/10.1086/302411
  45. Shen, Y., Kohla, G., Lrhorfi, A. L., Sipos, B., Kalthoff, H., et al. (2004) O-acetylation and de-O-acetylation of sialic acids in human colorectal carcinoma. Eur. J. Biochem. 271, 281−290 https://doi.org/10.1046/j.1432-1033.2003.03927.x
  46. Simanek, E. E., McGarvey, G. J., Jablonowski, J. A., and Wong, C. H. (1998) Selectin (−) carbohydrate interactions: from natural ligands to designed mimics. Chem. Rev. 98, 833−862
  47. Stasche, R., Hinderlich, S., Weise, C., Effertz, K., Lucka, L., et al. (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272, 24319−24324 https://doi.org/10.1074/jbc.272.39.24319
  48. Strehle, E. M. (2003) Sialic acid storage disease and related disorders. Genet. Test 7, 113−121 https://doi.org/10.1089/109065703322146795
  49. Takano, R., Muchmore, E., and Dennis, J. W. (1994) Sialylation and malignant potential in tumour cell glycosylation mutants. Glycobiology 4, 665−674
  50. Tang, J., Rutishauser, U., and Landmesser, L. (1994) Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13, 405−414
  51. Tong, H. H., Liu, X., Chen, Y., James, M., and Demaria, T. (2002) Effect of neuraminidase on receptor-mediated adherence of Streptococcus pneumoniae to chinchilla tracheal epithelium. Acta Otolaryngol. 122, 413−419 https://doi.org/10.1080/00016480260000111
  52. Troy, F. A., 2nd. (1992) Polysialylation: from bacteria to brains. Glycobiology 2, 5−23 https://doi.org/10.1093/glycob/2.1.5
  53. Vestweber, D. and Blanks, J. E. (1999) Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 79, 181−213
  54. Wang, C., Rougon, G., and Kiss, J. Z. (1994) Requirement of polysialic acid for the migration of the O-2A glial progenitor cell from neurohypophyseal explants. J. Neurosci. 14, 4446−4457
  55. Yang, P., Major, D., and Rutishauser, U. (1994) Role of charge and hydration in effects of polysialic acid on molecular interactions on and between cell membranes. J. Biol. Chem. 269, 23039−23044