• Title/Summary/Keyword: genomic data

Search Result 626, Processing Time 0.024 seconds

NADP+-Dependent Dehydrogenase SCO3486 and Cycloisomerase SCO3480: Key Enzymes for 3,6-Anhydro-ʟ-Galactose Catabolism in Streptomyces coelicolor A3(2)

  • Tsevelkhorloo, Maral;Kim, Sang Hoon;Kang, Dae-Kyung;Lee, Chang-Ro;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.756-763
    • /
    • 2021
  • Agarose is a linear polysaccharide composed of ᴅ-galactose and 3,6-anhydro-ʟ-galactose (AHG). It is a major component of the red algal cell wall and is gaining attention as an abundant marine biomass. However, the inability to ferment AHG is considered an obstacle in the large-scale use of agarose and could be addressed by understanding AHG catabolism in agarolytic microorganisms. Since AHG catabolism was uniquely confirmed in Vibrio sp. EJY3, a gram-negative marine bacterial species, we investigated AHG metabolism in Streptomyces coelicolor A3(2), an agarolytic gram-positive soil bacterium. Based on genomic data, the SCO3486 protein (492 amino acids) and the SCO3480 protein (361 amino acids) of S. coelicolor A3(2) showed identity with H2IFE7.1 (40% identity) encoding AHG dehydrogenase and H2IFX0.1 (42% identity) encoding 3,6-anhydro-ʟ-galactonate cycloisomerase, respectively, which are involved in the initial catabolism of AHG in Vibrio sp. EJY3. Thin layer chromatography and mass spectrometry of the bioconversion products catalyzed by recombinant SCO3486 and SCO3480 proteins, revealed that SCO3486 is an AHG dehydrogenase that oxidizes AHG to 3,6-anhydro-ʟ-galactonate, and SCO3480 is a 3,6-anhydro-ʟ-galactonate cycloisomerase that converts 3,6-anhydro-ʟ-galactonate to 2-keto-3-deoxygalactonate. SCO3486 showed maximum activity at pH 6.0 at 50℃, increased activity in the presence of iron ions, and activity against various aldehyde substrates, which is quite distinct from AHG-specific H2IFE7.1 in Vibrio sp. EJY3. Therefore, the catabolic pathway of AHG seems to be similar in most agar-degrading microorganisms, but the enzymes involved appear to be very diverse.

Prophylactic Mastectomy and Implant-Based Breast Reconstruction of BRCA1/2 Mutation-Positive Patients in Korea

  • Lee, Joon Seok;Lee, Jeeyeon;Park, Ho Yong;Yang, Jung Dug
    • Journal of Interdisciplinary Genomics
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Purpose: Mastectomy is performed as a surgical treatment for patients with breast cancer who have the BRCA 1/2 mutation. In this study, we have reported the trends in Korea for both immediate breast reconstruction and prophylactic mastectomy. Methods: This retrospective study was conducted from 2019 to 2021. Both skin-sparing mastectomy and immediate implant-based breast reconstruction with prepectoral and/or subpectoral techniques were performed in five patients with BRCA 1/2 mutations. Data on age; body mass index; cancer stage; BRCA 1/2 mutation; estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression; diagnosis; and complications were collected. Results: The average (±standard deviation [SD]) age was 44.0±6.48 years old; BMI 24.5±2.25 kg/m2; and breast volumes were 365.8±70.34 and 382.4±96.33 cc for right and left ones, respectively. The BRCA 1 and 2 were diagnosed in four and one patients, respectively. The estrogen and progesterone receptors and human epidermal growth factor receptor 2 were detected in one (20%), one (20%), and three (60%) patients, respectively. The applied implant-based breast reconstruction techniques for ten breasts were subpectoral technique (n=7, 70%) and prepectoral technique (n=3, 30%). For the cancer stage, those with I, II, and III stages were one (20%), two (40%), and one (20%), respectively. There were no major complications such as Infection, seroma. Conclusion: When mastectomy is performed as surgical treatment in BRCA 1/2 mutation positive breast cancer patients, it is possible to obtain a better outcome with both implant-based breast reconstruction and different circumstances between breast cancer and contralateral breast.

Complete mitochondrial genome of Rotunda rotundapex Miyata & Kishida 1990 (Lepidoptera: Bombycidae), which was named as Bombyx shini Park & Sohn 2002

  • Park, Jeong Sun;Kim, Min Jee;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.44 no.2
    • /
    • pp.55-64
    • /
    • 2022
  • Bombyx shini Park & Sohn, 2002 (Lepidoptera: Bombycidae), which was listed as an endemic species in South Korea has recently been renamed as the East Asian silk moth Rotunda rotundapex Miyata & Kishida, 1990 (Lepidoptera: Bombycidae). In this study, we sequenced the complete mitochondrial genome (mitogenome) of the R. rotundapex to announce genomic characteristics and to clarify its validity with a new name. The 15,294-bp long complete mitogenome comprises a typical set of genes [13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes] and one major noncoding, A + T-rich region, with an arrangement identical to that observed in most lepidopteran mitogenomes. The A/T content of the whole mitogenome was 79.22%; however, it varied among the regions/genes as follows: A + T-rich region, 91.62%; srRNA, 84.67%; lrRNA, 83.01%; tRNAs, 81.43%; and PCGs, 77.46%. Phylogenetic analyses of 35 species in the Bombycoidea superfamily showed the sister relationship between the families Sphingidae and Bombycidae s. str., with the higher nodal support [bootstrap support (BS) = 78%]. The Saturniidae was placed as the sister to the two families, but the nodal support for this relationship was low (BS = 53%). Current R. rotundapex was placed together with previously reported con-species with the highest nodal support, forming a separate clade from Bombyx, validating that B. shini can have a new genus name, Rotunda. However, the Korean R. rotundapex showed a substantial sequence divergence at 5.28% to that originated from an individual of type locality Taiwan in 1,459-bp of COI sequences. Considering such a high sequence divergence an additional study, which includes morphological and DNA barcoding data from further extensive distributional range maybe is needed for further robust taxonomic conclusion.

Growth Outcome and Metabolic Profile of PWS Patients Treated with GH and Differences between AGA and SGA Group

  • Yoon, Ju Young
    • Journal of Interdisciplinary Genomics
    • /
    • v.4 no.2
    • /
    • pp.35-38
    • /
    • 2022
  • Background: Prader-Willi syndrome (PWS) is a complex genetic disease associated with growth impairment, severe obesity and metabolic dysfunctions. High proportion of PWS patients are born small for gestational age (SGA) than normal children, which also increase the risk of growth impairment and metabolic dysfunction in PWS. We aimed to compare growth outcome and metabolic profiles between SGA and appropriate for gestational age (AGA) PWS patients. Methods: Data of 55 PWS children and adults aged more than 2 years old (32 male and 23 female, age 2-18.8 years) from single center were studied. Only patients who were treated with GH were included. The clinical characteristics and laboratory findings were reviewed retrospectively. Results: Among 55 subjects, 39 had 15q11-13 deletion and 16 had uniparental disomy (UPD). Twenty (36.3%) were born SGA. All patients received GH treatment, and 11 (20%) discontinued GH treatment. Mean age at GH treatment initiation was 2.5 (range 0.3-12.4) years, and mean duration of treatment was 6.3 (range 1.0-11.3) years. Current height-SDS (-0.36 vs -0.16) and BMI-SDS (1.44 vs 1.33) did not differ between AGA and SGA group. Two patients in SGA group, but none in AGA group had diabetes mellitus. Mean glucose level was also higher in SGA group (100.1 vs 114.4 mg/dL). Conclusion: Our report gives an overview of growth profile and metabolic dysfunctions recorded in GH treated PWS patients. Growth profile did not differ between AGA and SGA group. Glucose level was higher in SGA group, so more careful monitoring and prevention for DM will be required in SGA group.

Characterization of the first mitogenomes of the smallest fish in the world, Paedocypris progenetica, from peat swamp of Peninsular Malaysia, Selangor, and Perak

  • Hussin, NorJasmin;Azmir, Izzati Adilah;Esa, Yuzine;Ahmad, Amirrudin;Salleh, Faezah Mohd;Jahari, Puteri Nur Syahzanani;Munian, Kaviarasu;Gan, Han Ming
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.12.1-12.7
    • /
    • 2022
  • The two complete mitochondrial genomes (mitogenomes) of Paedocypris progenetica, the smallest fish in the world which belonged to the Cyprinidae family, were sequenced and assembled. The circular DNA molecules of mitogenomes P1-P. progenetica and S3-P. progenetica were 16,827 and 16,616 bp in length, respectively, and encoded 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region. The gene arrangements of P. progenetica were identical to those of other Paedocypris species. BLAST and phylogenetic analyses revealed variations in the mitogenome sequences of two Paedocypris species from Perak and Selangor. The circular DNA molecule of P. progenetica yield a standard vertebrate gene arrangement and an overall nucleotide composition of A 33.0%, T 27.2%, C 23.5%, and G 15.5%. The overall AT content of this species was consistent with that of other species in other genera. The negative GC-skew and positive AT-skew of the control region in P. progenetica indicated rich genetic variability and AT nucleotide bias, respectively. The results of this study provide genomic variation information and enhance the understanding of the mitogenome of P. progenetica. They could later deliver highly valuable new insight into data for phylogenetic analysis and population genetics.

A New Approach Using the SYBR Green-Based Real-Time PCR Method for Detection of Soft Rot Pectobacterium odoriferum Associated with Kimchi Cabbage

  • Yong Ju, Jin;Dawon, Jo;Soon-Wo, Kwon;Samnyu, Jee;Jeong-Seon, Kim;Jegadeesh, Raman;Soo-Jin, Kim
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.656-664
    • /
    • 2022
  • Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferumspecific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.

Challenges of Genome Wide Sequencing Technologies in Prenatal Medicine (산전 진단에서의 염기 서열 분석 방법의 의의)

  • Kang, Ji-Un
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.762-769
    • /
    • 2022
  • Genetic testing in prenatal diagnosis is a precious tool providing valuable information in clinical management and parental decision-making. For the last year, cytogenetic testing methods, such as G-banding karyotype analysis, fluorescent in situ hybridization, chromosomal microarray, and gene panels have evolved to become part of routine laboratory testing. However, the limitations of each of these methods demonstrate the need for a revolutionary technology that can alleviate the need for multiple technologies. The recent introduction of new genomic technologies based on next-generation sequencing has changed the current practice of prenatal testing. The promise of these innovations lies in the fast and cost-effective generation of genome-scale sequence data with exquisite resolution and accuracy for prenatal diagnosis. Here, we review the current state of sequencing-based pediatric diagnostics, associated challenges, as well as future prospects.

Gene Expression Analyses of Mutant Flammulina velutipes (Enokitake Mushroom) with Clogging Phenomenon

  • Ju-Ri Woo;Doo-Ho Choi;Muhammed Taofiq Hamza;Kyung-Oh Doh;Chang-Yoon Lee;Yeon-Sik Choo;Sangman Lee;Jong-Guk Kim;Heeyoun Bunch;Young-Bae Seu
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.366-373
    • /
    • 2022
  • Regulation of proper gene expression is important for cellular and organismal survival, maintenance, and growth. Abnormal gene expression, even for a single critical gene, can thwart cellular integrity and normal physiology to cause diseases, aging, and death. Therefore, gene expression profiling serves as a powerful tool to understand the pathology of diseases and to cure them. In this study, the difference in gene expression in Flammulina velutipes was compared between the wild type (WT) mushroom and the mutant one with clogging phenomenon. Differentially expressed transcripts were screened to identify the candidate genes responsible for the mutant phenotype using the DNA microarray analysis. A total of 88 genes including 60 upregulated and 28 downregulated genes were validated using the real-time quantitative PCR analysis. In addition, proteomic differences between the WT and mutant mushroom were analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Interestingly, the genes identified by these genomic and proteomic analyses were involved in stress response, translation, and energy/sugar metabolism, including HSP70, elongation factor 2, and pyruvate kinase. Together, our data suggest that the aberrant expression of these genes attributes to the mutant clogging phenotype. We propose that these genes can be targeted to foster normal growth in F. velutipes.

Characterization analysis of Rongchang pig population based on the Zhongxin-1 Porcine Breeding Array PLUS

  • Dong Leng;Liangpeng Ge;Jing Sun
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1508-1516
    • /
    • 2023
  • Objective: To carry out a comprehensive production planning of the existing Rongchang pig population from both environmental and genetic aspects, and to establish a closed population with stable genetic diversity and strict pathogen control, it is necessary to fully understand the genetic background of the population. Methods: We genotyped 54 specific pathogen free (SPF) Rongchang pigs using the Zhongxin-1 Porcine Breeding Array PLUS, calculated their genetic diversity parameters and constructed their families. In addition, we also counted the runs of homozygosity (ROH) of each individual and calculated the value of inbreeding coefficient based on ROH for each individual. Results: Firstly, the results of genetic diversity analysis showed that the effective population size (Ne) of this population was 3.2, proportion of polymorphic markers (PN) was 0.515, desired heterozygosity (He) and observed heterozygosity (Ho) were 0.315 and 0.335. Ho was higher than He, indicating that the heterozygosity of all the selected loci was high. Secondly, combining the results of genomic relatedness analysis and cluster analysis, it was found that the existing Rongchang pig population could be divided into four families. Finally, we also counted the ROH of each individual and calculated the inbreeding coefficient value accordingly, whose mean value was 0.09. Conclusion: Due to the limitation of population size and other factors, the genetic diversity of this Rongchang pig population is low. The results of this study can provide basic data to support the development of Rongchang pig breeding program, the establishment of SPF Rongchang pig closed herd and its experimental utilization.

Genomic Analysis of the Carrot Bacterial Blight Pathogen Xanthomonas hortorum pv. carotae in Korea

  • Mi-Hyun Lee;Sung-Jun Hong;Dong Suk Park;Hyeonheui Ham;Hyun Gi Kong
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.409-416
    • /
    • 2023
  • Bacterial leaf blight of carrots caused by Xanthomonas hortorum pv. carotae (Xhc) is an important worldwide seed-borne disease. In 2012 and 2013, symptoms similar to bacterial leaf blight were found in carrot farms in Jeju Island, Korea. The phenotypic characteristics of the Korean isolation strains were similar to the type strain of Xhc. Pathogenicity showed symptoms on the 14th day after inoculation on carrot plants. Identification by genetic method was multi-position sequencing of the isolated strain JJ2001 was performed using four genes (danK, gyrB, fyuA, and rpoD). The isolated strain was confirmed to be most similar to Xhc M081. Furthermore, in order to analyze the genetic characteristics of the isolated strain, whole genome analysis was performed through the next-generation sequencing method. The draft genome size of JJ2001 is 5,443,372 bp, which contains 63.57% of G + C and has 4,547 open reading frames. Specifically, the classification of pathovar can be confirmed to be similar to that of the host lineage. Plant pathogenic factors and determinants of the majority of the secretion system are conserved in strain JJ2001. This genetic information enables detailed comparative analysis in the pathovar stage of pathogenic bacteria. Furthermore, these findings provide basic data for the distribution and diagnosis of Xanthomonas hortorum pv. carotae, a major plant pathogen that infects carrots in Korea.