• Title/Summary/Keyword: genome-wide

Search Result 694, Processing Time 0.028 seconds

Progress and Prospect of Rice Biotechnology in Korea

  • Tae Young, Chung
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 1997.06a
    • /
    • pp.23-49
    • /
    • 1997
  • This is a progress report of rice biotechnology including development of gene transformation system, gene cloning and molecular mapping in rice. The scope of the research was focused on the connection between conventional breeding and biotech-researches. Plant transformation via Agrobacterium or particle bombardment was developed to introduce one or several genes to recommended rice cultivars. Two chimeric genes containing a maize ribosome inactivating protein gene (RIP) and a gerbicide resistant gene (bar) were introduced to Nipponbare, a Japonica cultivar, and transmitted to Korean cultivars. The homozygous progenies of herbicide resistant transgenic plant showed good fertility and agronomic characters. To explore the genetic resourses in rice, over 8,000 cDNA clones from immature rice seed have been isolated and sequenced. About 13% of clones were identified as enzymes related to metabolic pathway. Among them, twenty clones have high homology with genes encoding enzymes in the photorespiratory carbon cycle reaction. Up to now about 100 clones were fully sequenced and registered at EMBL and GenBank. For the mapping of quantitative tarits loci (QTL) and eternal recombinant inbred population with 164 F13 lines (MGRI) was developed from a cross between Milyang 23 and Gihobyeo, Korean rice cultivars. After construction of fully saturated RFLP and AFLP map, quantitative traits using MGRI population were analyzed and integrated into the molecular map. Eighty seven loci were determined with 27 QTL characters including yield and yield components on rice chromosomes. Map based cloning was also tried to isolate semi-dwarf (sd-1) gene in rice. A DNA probe, RG 109, the most tightly linked to sd-1 gene was used to screen from bacterial artifical chromosome (BAC) libraries and five over lapping clones presumably containing sd-1 gene were isolated. Rice genetic database including results of biotech reasearch and classical genetics is provided at Korea Rice Genome Server which is accessible with world wide web (www) browser. The server provides rice cDNA sequences and map informations linked with phenotypic images.

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia;Kumar, Vijay;Goutam, Ravi Shankar;Kumar, Shiv;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.723-735
    • /
    • 2021
  • Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

Replication Association Study between RBC Indices and Genetic Variants in Korean Population

  • Lee, Sang In;Park, Sangjung;Jin, Hyun-Seok
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.190-195
    • /
    • 2019
  • Hemoglobin (Hb) concentrations and hematocrit (Hct) values can be changed by factors such as erythrocyte production, destruction, and bleeding. In addition, variants in the protein expression involved in the amount of red blood cells that determine Hb metabolism or Hct value can increase susceptibility to complex blood diseases. Previous studies have reported significant single nucleotide polymorphisms (SNPs) by applying a genome-wide association study (GWAS) on Hb levels and Hct values in European population. In this study, we confirmed whether the significant SNPs are replicated in Koreans. In previous studies, 26 and 18 SNPs with a significant correlation Hb and Hct were identified in Korean genotype data, and 21 and 12 SNPs were selected, respectively. The SNPs of PRKCE (rs10495928), TMPRSS6 (rs2235321, rs5756505, rs855791) were significantly associated with Hb (P<0.05). In the association analysis of Hct, the SNPs of HBS1L (rs6920211, rs9389268, rs9483788), PRKCE (rs4953318), SCGN (rs9348689) and TMPRSS6 (rs2413450) genes showed a significant correlation (P<0.05). Replicated SNPs and not replicated SNPs showed the difference of genetic distance calculated by Fst. The replicated SNPs with a significant correlation showed similar allele frequencies, whereas the not replicated SNPs showed a large difference in allele frequency. All replicated SNPs with significant correlations had Fst values less than 0.05, indicating that the genetic distance between the groups was close. On the other hand, the not replicated SNPs showed that the Fst value was 0.05 or more and the genetic distance was relatively large.

Dominance effects of ion transport and ion transport regulator genes on the final weight and backfat thickness of Landrace pigs by dominance deviation analysis

  • Lee, Young?Sup;Shin, Donghyun;Song, Ki?Duk
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1331-1338
    • /
    • 2018
  • Although there have been plenty of dominance deviation analysis, few studies have dealt with multiple phenotypes. Because researchers focused on multiple phenotypes (final weight and backfat thickness) of Landrace pigs, the classification of the genes was possible. With genome-wide association studies (GWASs), we analyzed the additive and dominance effects of the single nucleotide polymorphisms (SNPs). The classification of the pig genes into four categories (overdominance in final weight, overdominance in backfat thickness and overdominance in final weight, underdominance in backfat thickness, etc.) can enable us not only to analyze each phenotype's dominant effects, but also to illustrate the gene ontology (GO) analysis with different aspects. We aimed to determine the additive and dominant effect in backfat thickness and final weight and performed GO analysis. Using additive model and dominance deviation analysis in GWASs, Landrace pigs' overdominant and underdominant SNP effects in final weight and backfat thickness were surveyed. Then through GO analysis, we investigated the genes that were classified in the GWASs. The major GO terms of the underdominant effects in final weight and overdominant effects in backfat thickness were ion transport with the SLC8A3, KCNJ16, P2RX7 and TRPC3 genes. Interestingly, the major GO terms in the underdominant effects in the final weight and the underdominant effects in the backfat thickness were the regulation of ion transport with the STAC, GCK, TRPC6, UBASH3B, CAMK2D, CACNG4 and SCN4B genes. These results demonstrate that ion transport and ion transport regulation genes have distinct dominant effects. Through GWASs using the mode of linear additive model and dominance deviation, overdominant effects and underdominant effects in backfat thickness was contrary to each other in GO terms (ion transport and ion transport regulation, respectively). Additionally, because ion transport and ion transport regulation genes are associative with adipose tissue accumulation, we could infer that these two groups of genes had to do with unique fat accumulation mechanisms in Landrace pigs.

Immunohistochemical Study of Psoriasis-related Gene Expression in Imiquimod-induced Psoriasis-like Mouse Model (이미퀴모드로 유발된 건선양 쥐 모델에서 건선 연관 유전자 발현에 대한 면역조직화학적 연구)

  • Kim, Ji-Young;Choi, Mi-Ra;Choi, Chong-Won;Park, Kyung-Duck;Lee, Young;Kim, Chang-Deok;Seo, Young-Joon;Lee, Jeung-Hoon
    • Korean journal of dermatology
    • /
    • v.56 no.10
    • /
    • pp.609-613
    • /
    • 2018
  • Background: Psoriasis is a chronic inflammatory skin disease with an incidence of 0.5~3% of the worldwide population. The pathogenesis of psoriasis is related to dysregulated keratinocyte function and immune reactions. Notably, genetic factors are considered important etiological contributors. Globally, several researchers have recently performed genome-wide association studies (GWAS) to identify the genes related with psoriasis. Objective: We aimed to investigate the expression pattern of 2 candidate genes that were identified by GWAS. These include interleukin 28 receptor alpha (IL28RA) and CUB and Sushi multiple domains 1 (CSMD1). Methods: We applied imiquimod cream to develop a psoriasis-like mouse model and obtained skin tissue. We performed immunohistochemistry to detect the expression of IL-28A and CSMD1. Results: IL28RA expression increased at an early time point such as 1 day after the topical application of 5% imiquimod cream. However, its expression returned to baseline levels 2 weeks after the topical application of imiquimod cream. CSMD1 expression also increased after the topical application of imiquimod, with increased expression particularly observed in the upper epidermal layer. Notably, CSMD1 expression decreased 7 days after imiquimod cream application. Conclusion: These results suggest that IL28RA and CSMD1 may play key roles in the pathogenesis of psoriasis.

Antifungal Mechanism of Action of Lauryl Betaine Against Skin-Associated Fungus Malassezia restricta

  • Do, Eunsoo;Lee, Hyun Gee;Park, Minji;Cho, Yong-Joon;Kim, Dong Hyeun;Park, Se-Ho;Eun, Daekyung;Park, Taehun;An, Susun;Jung, Won Hee
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.242-249
    • /
    • 2019
  • Betaine derivatives are considered major ingredients of shampoos and are commonly used as antistatic and viscosity-increasing agents. Several studies have also suggested that betaine derivatives can be used as antimicrobial agents. However, the antifungal activity and mechanism of action of betaine derivatives have not yet been fully understood. In this study, we investigated the antifungal activity of six betaine derivatives against Malassezia restricta, which is the most frequently isolated fungus from the human skin and is implicated in the development of dandruff. We found that, among the six betaine derivatives, lauryl betaine showed the most potent antifungal activity. The mechanism of action of lauryl betaine was studied mainly using another phylogenetically close model fungal organism, Cryptococcus neoformans, because of a lack of available genetic manipulation and functional genomics tools for M. restricta. Our genome-wide reverse genetic screening method using the C. neoformans gene deletion mutant library showed that the mutants with mutations in genes for cell membrane synthesis and integrity, particularly ergosterol synthesis, are highly sensitive to lauryl betaine. Furthermore, transcriptome changes in both C. neoformans and M. restricta cells grown in the presence of lauryl betaine were analyzed and the results indicated that the compound mainly affected cell membrane synthesis, particularly ergosterol synthesis. Overall, our data demonstrated that lauryl betaine influences ergosterol synthesis in C. neoformans and that the compound exerts a similar mechanism of action on M. restricta.

Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.572-579
    • /
    • 2019
  • Background: Panax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited. Methods: We sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed. Results: CP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars. Conclusion: Our comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.

PDGFC, MARK3 and BCL2 Polymorphisms are Associated with Left Ventricular Hypertrophy in Korean Population

  • Jeon, Tae-Eun;Jin, Hyun-Soek
    • Biomedical Science Letters
    • /
    • v.25 no.3
    • /
    • pp.237-246
    • /
    • 2019
  • Left ventricular hypertrophy (LVH) refers to the expansion and the enlarged myocardium due to the increased resistance to ejection from the left ventricle to the aorta and/or the periphery, or the long-term burden imposed by the blood increase. Hypertension is a major risk factor that accounts for more than 50% of the causes of cardiovascular disease. If hypertension endure in the long term, the myocardium responds to abnormal heartbeat in the heart. Therefore, the prevalence of left ventricular hypertrophy also increases. As a result of genome-wide association study (GWAS) analysis for European people, PDGFC, MARK3, and BCL2 were related to blood pressures. In this study, the genetic polymorphisms of PDGFC, MARK3, and BCL2 were extracted and selected based on Korean genomic and epidemiologic data, and then logistic regression analysis was performed on LVH. As a result, one SNP (rs9307953) in PDGFC gene, four SNPs (rs6575983, rs17679475, rs2273703 and rs10141388) in MARK3 gene and two SNPs (rs17756073 and rs17070739) in BCL2 gene were statistically significant. The rs6575983 of the MARK3 gene showed the highest significance level ($P=7.2{\times}10^{-3}$) among the SNPs and the relative risk of 1.08 (95% confidence interval: 1.06 to 1.45). These results suggest that the polymorphisms of PDGFC, MARK3, and BCL2 not only affect European blood pressures but also correlate with LVH in Korean. These results suggest that increased understanding of the genetic correlations of the pathogenesis of LVH.

Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression

  • Kumar, Shiv;Umair, Zobia;Kumar, Vijay;Lee, Unjoo;Choi, Sun-Cheol;Kim, Jaebong
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.403-408
    • /
    • 2019
  • Dorsoventral patterning of body axis in vertebrate embryo is tightly controlled by a complex regulatory network of transcription factors. Ventx1.1 is known as a transcriptional repressor to inhibit dorsal mesoderm formation and neural differentiation in Xenopus. In an attempt to identify, using chromatin immunoprecipitation (ChIP)-Seq, genome-wide binding pattern of Ventx1.1 in Xenopus gastrulae, we observed that Ventx1.1 associates with its own 5'-flanking sequence. In this study, we present evidence that Ventx1.1 binds a cis-acting Ventx1.1 response element (VRE) in its own promoter, leading to repression of its own transcription. Site-directed mutagenesis of the VRE in the Ventx1.1 promoter significantly abrogated this inhibitory autoregulation of Ventx1.1 transcription. Notably, Ventx1.1 and Xcad2, an activator of Ventx1.1 transcription, competitively co-occupied the VRE in the Ventx1.1 promoter. In support of this, mutation of the VRE down-regulated basal and Xcad2-induced levels of Ventx1.1 promoter activity. In addition, overexpression of Ventx1.1 prevented Xcad2 from binding to the Ventx1.1 promoter, and vice versa. Taken together, these results suggest that Ventx1.1 negatively regulates its own transcription in competition with Xcad2, thereby fine-tuning its own expression levels during dorsoventral patterning of Xenopus early embryo.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.