• Title/Summary/Keyword: genetic-fuzzy algorithm

Search Result 612, Processing Time 0.024 seconds

A Control of Inverted pendulum Using Genetic-Fuzzy Logic (유전자-퍼지 논리를 사용한 도립진자의 제어)

  • 이상훈;박세준;양태규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.977-984
    • /
    • 2001
  • In this paper, Genetic-Fuzzy Algorithm for Inverted Pendulum is presented. This Algorithms is combine Fuzzy logic with the Genetic Algorithm. The Fuzzy Logic Controller is only designed to two inputs and one output. After Fuzzy control rules are determined, Genetic Algorithm is applied to tune the membership functions of these rules. To measure of performance of the designed Genetic-Fuzzy controller, Computer simulation is applied to Inverted Pendulum system. In the simulation, In the case of f[0.3, 0.3] Fuzzy controller is measured that maximum undershoot is $-5.0 \times 10^{-2}[rad]$, maximum undershoot is $3.92\times10^{-2}[rad]$ individually however, Designed algorithm is zero. The Steady state time is approximated that Fuzzy controller is 2.12[sec] and designed algorithm is 1.32[sec]. The result of simulation, Resigned algorithm is showed it's efficient and effectiveness for Inverted Pendulum system.

  • PDF

Fuzzy Logic Controller Design via Genetic Algorithm

  • Kwon, Oh-Kook;Wook Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.612-618
    • /
    • 1998
  • The success of a fuzzy logic control system solving any given problem critically depends on the architecture of th network. Various attempts have been made in optimizing its structure its structure using genetic algorithm automated designs. In a regular genetic algorithm , a difficulty exists which lies in the encoding of the problem by highly fit gene combinations of a fixed-length. This paper presents a new approach to structurally optimized designs of a fuzzy model. We use a messy genetic algorithm, whose main characteristics is the variable length of chromosomes. A messy genetic algorithms used to obtain structurally optimized fuzzy models. Structural optimization is regarded important before neural network based learning is switched into. We have applied the method to the exampled of a cart-pole balancing.

  • PDF

Design of Auto-Tuning Fuzzy Logic Controllers Using Hybrid Genetic Algorithms (하이브리드 유전 알고리듬을 이용한 자동 동조 퍼지 제어기의 설계)

  • Ryoo, Dong-Wan;Kwon, Jae-Cheol;Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.126-129
    • /
    • 1997
  • This paper propose a new hybrid genetic algorithm for auto-tunig auzzy controller improving the performance. In general, fuzzy controller used pre-determine d moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controller, using hybrid genetic algorithms. The object of the proposed algorithm is to promote search efficiency by overcoming a premature convergence of genetic algorithms. Hybrid genetic algorithm is based on genetic algorithm and modified gradient method. Simulation results verify the validity of the presented method.

  • PDF

Control of the Washing Machineos Motor by the GA-Fuzzy Algorithm (GA-Fuzzy Algorithm에 의한 세탁기 모터의 제어)

  • 이재봉;김지현;박윤서;선희복
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.3-12
    • /
    • 1995
  • A controller utilizing fuzzy logic is developed to control the speed of a motor in a washing machine by choosing an appropriate phase. Due to the hardship imposed on obtaining a result from a relation established for inputs, present speed and present rate of speed, and ouput, a phase, of the system that can be tested against an experimental result, it is impossible to apply a genetic algorithm to fine-tune the fuzzy logic controller. To avoid this difficulty, a proper assumption that the parameters of an if-part of a primary fuzzy logic controller have a functional relationship with an error between computed values and experimental ones in made. Setting up of a fuzzy relationship between the parameters and the errors is then achieved through experimentally obtained data. Genetic Algorithm is then applied to this secondary fuzzy logic controller to verify the fuzzy logic. In the verification process, the primary fuzzy logic controller is used in obtaining experimental results. In this way the kind of difficulty in obtaining enough experimental values used to verify the fuzzy logic with genetic algorithm is gotten around. Selection of the parameters that would produce the least error when using the secondary fuzzy logic controller is done with applying genetic algorithm to the then-part of the controller. In doing so the optimal values for the parameters of the if-part of the primary fuzzy logic controller are assumed to be contained. The experimental result presented in the paper validates the assumption.

  • PDF

A Study on the Parameters Tuning Method of the Fuzzy Power System Stabilizer Using Genetic Algorithm and Simulated Annealing (혼합형 유전 알고리즘을 이용한 퍼지 안정화 제어기의 계수동조 기법에 관한 연구)

  • Lee, Heung-Jae;Im, Chan-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.589-594
    • /
    • 2000
  • The fuzzy controllers have been applied to the power system stabilizer due to its excellent properties on the nonlinear systems. But the design process of fuzzy controller requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This process is time consuming task. This paper presents an parameters tuning method of the fuzzy power system stabilizer using the genetic algorithm and simulated annealing(SA). The proposed method searches the local minimum point using the simulated annealing algorithm. The proposed method is applied to the one-machine infinite-bus of a power system. Through the comparative simulation with conventional stabilizer and fuzzy stabilizer tuned by genetic algorithm under various operating conditions and system parameters, the robustness of fuzzy stabilizer tuned by proposed method with respect to the nonlinear power system is verified.

  • PDF

A Strategy of modeling for fermentation process by using genetic-fuzzy system

  • Na, Jeong-Geol;Lee, Tae-Hwa;Jang, Yong-Geun;Jeong, Bong-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.177-180
    • /
    • 2000
  • An algorithm for modeling of yeast fermentation process using genetic-fuzzy algorithm is presented in this work. The algorithm involves developing the fuzzy modeling of the process and model update capability against the system change. The membership functions of state variables and specific rates and the decision table were generated using genetic algorithm. This algorithm could replace the complex mathematical model to simple fuzzy model and cope with the change of process characteristics well.

  • PDF

Design of Fuzzy Scaling Gain Controller using Genetic Algorithm

  • Hyunseok Shin;Lee, Sungryul;Hyungjin Kang;Cheol Kwon;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.474-478
    • /
    • 1998
  • This paper proposes a method which can resolve the problem of exisiting fuzzy PI controller using optimal scaling gains obtained by genetic algorithm. The new method adapt a fuzzy logic controller as a high level controller to perform scaling gain algorithm between two pre-determined sets.

  • PDF

Automatic generation of Fuzzy Parameters Using Genetic and gradient Optimization Techniques (유전과 기울기 최적화기법을 이용한 퍼지 파라메터의 자동 생성)

  • Ryoo, Dong-Wan;La, Kyung-Taek;Chun, Soon-Yong;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.515-518
    • /
    • 1998
  • This paper proposes a new hybrid algorithm for auto-tuning fuzzy controllers improving the performance. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controllers, using a genetic-MGM algorithm. The object of the proposed algorithm is to promote search efficiency by a genetic and modified gradient optimization techniques. The proposed genetic and MGM algorithm is based on both the standard genetic algorithm and a gradient method. If a maximum point don't be changed around an optimal value at the end of performance during given generation, the genetic-MGM algorithm searches for an optimal value using the initial value which has maximum point by converting the genetic algorithms into the MGM(Modified Gradient Method) algorithms that reduced the number of variables. Using this algorithm is not only that the computing time is faster than genetic algorithm as reducing the number of variables, but also that can overcome the disadvantage of genetic algorithms. Simulation results verify the validity of the presented method.

  • PDF

Design of Fuzzy-Sliding Model Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyn
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 2001
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that he selected solution become the global optimal solution by optimizing the Akaikes information criterion expressing the quality of the inference rules. The trajectory tracking simulation and experiment of the polishing robot show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding mode controller provides reliable tracking performance during the polishing process.

  • PDF

FUZZY TRANSPORTATION PROBLEM WITH ADDITIONAL CONSTRAINT IN DIFFERENT ENVIRONMENTS

  • BUVANESHWARI, T.K.;ANURADHA, D.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.933-947
    • /
    • 2022
  • In this research, we presented the type 2 fuzzy transportation problem with additional constraints and solved by our proposed genetic algorithm model, and the results are verified using the softwares, genetic algorithm tool in Matlab and Lingo. The goal of our approach is to minimize the cost in solving a transportation problem with an additional constraint (TPAC) using the genetic algorithm (GA) based type 2 fuzzy parameter. We reduced the type 2 fuzzy set (T2FS) into a type 1 fuzzy set (T1FS) using a critical value-based reduction method (CVRM). Also, we use the centroid method (CM) to obtain the corresponding crisp value for this reduced fuzzy set. To achieve the best solution, GA is applied to TPAC in type 2 fuzzy parameters. A real-life situation is considered to illustrate the method.