• Title/Summary/Keyword: genetic system

Search Result 3,399, Processing Time 0.028 seconds

Sex-related demographics in two remnant populations of a dioecious tree Ilex cornuta (Aquifoliaceae): implications for conservation

  • Shin, Sookyung;Lee, Hakbong;Lee, Jei-Wan;Kang, Hyesoon
    • Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.320-331
    • /
    • 2019
  • Background: Dioecious plant species having both male and female plants have been investigated regarding sex-related characteristics such as sex ratio, sex-differential resource requirements, and spatial segregation of the sexes. Habitat loss and fragmentation are major threats to the survival of plant populations, but dioecious species are particularly more prone to such habitat degradation than non-dioecious species because of their dimorphic sexual system. We examined the sex-related demographics of two Ilex cornuta populations being different regarding land use history. Methods: During 2016-2017, we examined I. cornuta trees with a basal diameter ${\geq}1.5cm$ in the Yongsu-ri population (YS population) and the Gotjawal Provincial Park population (GP population). Plant sex (male, female, or unsexed) was identified. The tree size (basal diameter and height of the main stem), clonal production (the ramet numbers per genet), and vitality for each clone were measured. The associations between population, sex, tree size, clonal production, and vitality were examined using ANOVAs and contingency table analyses. Finally, point pattern analyses using O-ring statistics were conducted to assess spatial patterns. Results: Upon excluding unsexed trees, the YS population with 74 trees was significantly male-biased (0.66), while the GP population with only 26 trees had a 1:1 sex ratio. In both populations, males and females did not differ in tree size. Although the mean number of ramets differed significantly between populations, females tended to produce more ramets than males. The proportion of weak trees was significantly higher in the YS than in the GP population. Neither population showed evidence of spatial segregation of the sexes. Conclusions: The two populations of dioecious I. cornuta are characterized by the small number of trees and relatively high frequencies of non-reproductive trees. Both indicate that these populations are quite susceptible to environmental and genetic stochasticity. On the other hand, the differences between populations in sex ratio, clonal production, and vitality suggest that conservation efforts for I. cornuta need to be population-specific. In order to help recover and enable this vulnerable species to persist, it is necessary to find ways to enhance their sexual reproduction and simultaneously reduce habitat disturbances due to anthropogenic activities.

Public Perception of a Criminal DNA Database in Korea

  • Lee, Ji Hyun;Cho, Sohee;Kim, Moon Young;Lee, Seung Hwan;Lee, Hwan Young;Lee, Soong Deok;LoCascio, Sarah Prusoff;Jung, Kyu Won
    • Asian Journal for Public Opinion Research
    • /
    • v.7 no.2
    • /
    • pp.75-93
    • /
    • 2019
  • Background: Since 2010, Korea has maintained a DNA database of those convicted of or awaiting trial for certain crimes. There have been proposals to expand the list of crimes included in this database, or conversely, omit certain crimes if they are committed during protests. An understanding of the feelings of the public as we consider the ethical, legal, and social aspects of a DNA database and as revisions to laws are made is required. Methodology: Questions related to the DNA database were included in the nationally representative Korean Academic Multimode Open Survey (KAMOS) panel (June-August 2016). Results: Of 2,000 randomly selected panel members, 1,013 respondents participated in this survey, including 89.2% who supported the existence of a criminal DNA database. The current system of storing DNA profiles until a suspect's acquittal or a convict's death was supported by 79.5% of respondents. In addition, 70.8% of respondents agreed with the expansion of crime categories included in the criminal database. Many (93.4%) respondents favored genetic testing and data storage to determine the identity and cause of death for people who die of unnatural causes. Some differences in attitude related to social class were noted, with those who self-identified as members of the upper class more likely to support the database and its expansion to include additional crimes than those who self-identified as middle or lower class. Conclusion: Our findings suggest that Koreans generally support the criminal DNA database.

CRISPR/Cas9-mediated generation of a Plac8 knockout mouse model

  • Lee, HyunJeong;Kim, Joo-Il;Park, Jin-Sung;Roh, Jae-il;Lee, Jaehoon;Kang, Byeong-Cheol;Lee, Han-Woong
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.279-287
    • /
    • 2018
  • Placenta specific 8 (PLAC8, also known as ONZIN) is a multi-functional protein that is highly expressed in the intestine, lung, spleen, and innate immune cells, and is involved in various diseases, including cancers, obesity, and innate immune deficiency. Here, we generated a Plac8 knockout mouse using the CRISPR/Cas9 system. The Cas9 mRNA and two single guide RNAs targeting a region near the translation start codon at Plac8 exon 2 were microinjected into mouse zygotes. This successfully eliminated the conventional translation start site, as confirmed by Sanger sequencing and PCR genotyping analysis. Unlike the previous Plac8 deficient models displaying increased adipose tissue and body weights, our male Plac8 knockout mice showed rather lower body weight than sex-matched littermate controls, though the only difference between these two mouse models is genetic context. Differently from the previously constructed embryonic stem cell-derived Plac8 knockout mouse that contains a neomycin resistance cassette, this knockout mouse model is free from a negative selection marker or other external insertions, which will be useful in future studies aimed at elucidating the multi-functional and physiological roles of PLAC8 in various diseases, without interference from exogenous foreign DNA.

Disruption of the Tff1 gene in mice using CRISPR/Cas9 promotes body weight reduction and gastric tumorigenesis

  • Kim, Hyejeong;Jeong, Haengdueng;Cho, Yejin;Lee, Jaehoon;Nam, Ki Taek;Lee, Han-Woong
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2018
  • Trefoil factor 1 (TFF1, also known as pS2) is strongly expressed in the gastrointestinal mucosa and plays a critical role in the differentiation of gastric glands. Since approximately 50% of all human gastric cancers are associated with decreased TFF1 expression, it is considered a tumor suppressor gene. Tff1 deficiency in mice results in histological changes in the antral and pyloric gastric mucosa, with severe hyperplasia and dysplasia of epithelial cells, resulting in the development of antropyloric adenoma. Here, we generated Tff1-knockout (KO) mice, without a neomycin resistant ($Neo^R$) cassette, using the clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRSIPR/Cas9) system. Though our Tff1-KO mice showed phenotypes very similar to the previous embryonic stem (ES)-cell-based KO mice, they differed from the previous reports in that a reduction in body weight was observed in males. These results demonstrate that these newly established Tff1-KO mice are useful tools for investigating genetic and environmental factors influencing gastric cancer, without the effects of artificial gene insertion. Furthermore, these findings suggest a novel hypothesis that Tff1 expression influences gender differences.

Development of molecular markers for the differentiation of Angelica gigas Jiri line by using ARMS-PCR analysis (세발당귀(Angelica gigas Jiri)의 판별을 위한 ARMS-PCR용 분자표지 개발)

  • Lee, Shin-Woo;Lee, Soo Jin;Han, Eun-Hee;Shin, Yong-Wook;Kim, Yun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.26-33
    • /
    • 2021
  • Angelica is a widely used medicinal and perennial plant. Information on the genetic diversity of Angelica populations is essential for their conservation and germ plasmic utilization. Although Angelica is an important medicinal plant species registered in South Korea, no molecular markers are currently available to distinguish it from other similar species from different countries. This developed single nucleotide polymorphism (SNP) markers derived from nuclear ribosomal DNA internal transcribed spacer regions genomic sequences to identify distinct Korean-specific Angelica species via amplification refractory mutation system (ARMS)-PCR curve analyses. We performed molecular authentication of different kinds of Korean-specific Angelica species such as A. gigas Nakai and A. gigas Jiri using DNA sequences in the ITS intergenic region. The SNP markers developed in this study are useful for rapidly identifying specific Angelica species from different countr.

Feature Analysis of Ultrasonic Signals for Diagnosis of Welding Faults in Tubular Steel Tower (관형 철탑 용접 결함 진단을 위한 초음파 신호의 특징 분석)

  • Min, Tae-Hong;Yu, Hyeon-Tak;Kim, Hyeong-Jin;Choi, Byeong-Keun;Kim, Hyun-Sik;Lee, Gi-Seung;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.515-522
    • /
    • 2021
  • In this paper, we present and analyze a method of applying a machine learning to ultrasonic test signals for constant monitoring of the welding faults in a tubular steel tower. For the machine learning, feature selection based on genetic algorithm and fault signal classification using a support vector machine have been used. In the feature selection, the peak value, histogram lower bound, and normal negative log-likelihood from 30 features are selected. Those features clearly indicate the difference of signals according to the depth of faults. In addition, as a result of applying the selected features to the support vector machine, it has been possible to perfectly distinguish between the regions with and without faults. Hence, it is expected that the results of this study will be useful in the development of an early detection system for fault growth based on ultrasonic signals and in the energy transmission related industries in the future.

Morphological Analysis of Age-related Gender Differences in Cortical Thickness (연령별 대뇌 피질 두께의 성별 차이에 대한 형태학적 분석)

  • Haeseok, Seo;Suhyun, Kim;Uicheul, Yoon
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.53-63
    • /
    • 2023
  • There have been many studies from the genetic system to physical activity and emotional expression such that there are gender differences. The purpose of this study was to determine how the structural characteristics of cortical thickness differ between males and females. This study used data from the Human Connectome Project (HCP). To analyze age-specific sexual dimorphisms of cortical thickness, selected 8-80 year old subjects were divided into five detailed age range groups according to each criterion. A total of 1,700 individual brain MRI T1 data were registered in stereotaxic space for analysis and classified into white matter (WM), gray matter (GM), and cerebro-spinal fluid (CSF). For surface-based analysis, the WM/GM surface was reconstructed from a spherical polygon model with 40962 vertices per hemisphere, and each vertex was extended to the GM/CSF boundary. Cortical thickness was then measured between each vertex using the t-link method. In the statistical analysis, intracranial volume was used as a covariate to exclude the effect of the difference in brain size of each individual, and the result of using age as a covariate was added to confirm the age effect within each group. Gender differences in cortical thickness had significant results by group. This may be an index to explain diseases with sexual dimorphism in prevalence or become a basis for explaining the characteristics of each sex that appear in behavior, personality, and aging. Therefore, the results of our study could be a criterion for age classification in future studies and for understanding 'normal' sexual dimorphism.

The Effect of Seosiokyongsan fermented soap on facial pores (서시옥용산 발효비누가 얼굴모공에 미치는 영향)

  • CHoi, Sang Rak;Kim, Jeong Ja;Koo, Jin Suk
    • The Korea Journal of Herbology
    • /
    • v.34 no.2
    • /
    • pp.33-39
    • /
    • 2019
  • Objectives : The pores are the openings of sebaceous glands or apocrine glands. They are enlarged by various factors such as sex, age, genetic influence, sebum secretion, acne and so on. When the pores are visually recognizable, they become aesthetically problematic. There are various methods of treating pores, but we have tried to develop a method to reduce pore size by using daily cleanser. Methods : Facial skin examination was performed on 104 students of A university. Among them, 10 persons with large pore size were selected. We surveyed 72 students to determine their subjective skin condition, lifestyle, and washing habits etc. We made herbal fermented soaps using Seosiokyongsan and distributed them to experiment participants. We let them wash their face in the morning and evening for 6 weeks using herbal fermented soap. Prior to the experiment, their skin condition was checked and assessed using A-ONE Smart One-Click Automatic Facial Diagnosis System three times at 3-week intervals. After the experiment, the changes of skin were measured and analyzed through facial analysis test. Results : In our experiment, the early 20s, 9.6% of the students had slightly larger pores. For students with large pores, there was a high likelihood of side effects from using facial products. Using the fermented soap made of Seosiokyongsan, the average size of the pores and the number of large-sized pores were significantly reduced. Conclusion : Seosiokyongsan fermented soap can effectively reduce especially the large size of pores.

Recent advances in seaweed seedling production: a review of eucheumatoids and other valuable seaweeds

  • Jiksing, Calvin;Ongkudon, McMarshall M.;Thien, Vun Yee;Rodrigues, Kenneth Francis;Yong, Wilson Thau Lym
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.105-121
    • /
    • 2022
  • Modern seaweed farming relies heavily on seedlings from natural beds or vegetative cuttings from previous harvests. However, this farming method has some disadvantages, such as physiological variation in the seed stock and decreased genetic variability, which reduces the growth rate, carrageenan yield, and gel strength of the seaweeds. A new method of seedling production that is sustainable, scalable, and produces a large number of high-quality plantlets is needed to support the seaweed farming industry. Recent use of tissue culture and micropropagation techniques in eucheumatoid seaweed production has yielded promising results in increasing seed supply and growing uniform seedlings in large numbers in a shorter time. Several seaweed species have been successfully cultured and regenerated into new plantlets in laboratories using direct regeneration, callus culture, and protoplast culture. The use of biostimulants and plant growth regulators in culture media increases the seedling quality even further. Seedlings produced by micropropagation grew faster and had better biochemical properties than conventionally cultivated seedlings. Before being transferred to a land-based grow-out system or ocean nets for farming, tissue-cultured seedlings were recommended to undergo an acclimatization process to increase their survival rate. Regular monitoring is needed to prevent disease and pest infestations and grazing by herbivorous fish and turtles during the farming process. The current review discusses recent techniques for producing eucheumatoid and other valuable seaweed farming materials, emphasizing the efficiency of micropropagation and the transition from laboratory culture to cultivation in land-based or open-sea grow-out systems to elucidate optimal conditions for sustainable seaweed production.

New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study

  • Eun-Young Lee;Young-Ho Kim;Md Abu Rayhan;Hyun Guy Kang;June Hyuk Kim;Jong Woong Park;Seog-Yun Park;So Hee Lee;Hye Jin You
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.258-264
    • /
    • 2023
  • As a high-grade soft-tissue sarcoma (STS), undifferentiated pleomorphic sarcoma (UPS) is highly recurrent and malignant. UPS is categorized as a tumor of uncertain differentiation and has few options for treatment due to its lack of targetable genetic alterations. There are also few cell lines that provide a representative model for UPS, leading to a dearth of experimental research. Here, we established and characterized new cell lines derived from two recurrent UPS tissues. Cells were obtained from UPS tissues by mincing, followed by extraction or dissociation using enzymes and culture in a standard culture environment. Cells were maintained for several months without artificial treatment, and some cell clones were found to be tumorigenic in an immunodeficient mouse model. Interestingly, some cells formed tumors in vivo when injected after aggregation in a non-adherent culture system for 24 h. The tissues from in vivo study and tissues from patients shared common histological characteristics. Pathways related to the cell cycle, such as DNA replication, were enriched in both cell clones. Pathways related to cell-cell adhesion and cell-cell signaling were also enriched, suggesting a role of the mesenchymal-to-epithelial transition for tumorigenicity in vivo. These new UPS cell lines may facilitate research to identify therapeutic strategies for UPS.