• Title/Summary/Keyword: genetic species identification

Search Result 296, Processing Time 0.041 seconds

Genetic Distance Methods for the Identification of Cervus Species

  • Seo Jung-Chul;Kim Min-Jung;Lee Chan;Lee Jeong-Soo;Choi Kang-Duk;Leem Kang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.225-231
    • /
    • 2006
  • Objectives : This study was performed to determine if unknown species of antler samples could be identified by genetic distance methods. Methods : The DNAs of 4 antler samples were extracted, amplified by PCR, and sequenced. The DNAs of antlers were identified by genetic distance. Genetic distance method was made using MEGA software (Molecular Evolutionary Genetics Analysis, 3.1). Results : By genetic distance methods, all 4 antler samples were closest to Cervus elaphus nelsoni among Cervus species. Conclusion : These results suggest that genetic distance methods might be used as a tool for the identification of Cervus species.

  • PDF

Discrepancies in genetic identification of fish-derived Aeromonas strains

  • Han, Hyun-Ja;Kim, Do-Hyung
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.391-400
    • /
    • 2009
  • Genetic identification of 17 fish-derived Aeromonas strains was attempted using 5 housekeeping genes. 16S rRNA, gyrB, rpoD, dnaJ and recA genes from the 17 strains were amplified, and total of 85 amplicons were sequenced. DNA sequences of the strains and type strains of the 17 Aeromonas homology groups were used for genetic identification and phylogenetic analyses. None of the strains was identified as a single species using the 16S rRNA gene, showing the same identities (average = 99.7%) with several Aeromonas species. According to gyrB, rpoD, dnaJ, and recA, 9 strains and RFAS-1 used in this study were identified as A. hydrophila and A. salmonicida, respectively. However, the other strains were closely related to 2 or more Aeromonas species (i.e., A. salmonicida, A. veronii, A. jandaei, A. media and A. troda) depending on the genetic marker used. In this study, gyrB, rpoD, dnaJ and recA gene sequences proved to be advantageous over 16S rRNA for the identification of field Aeromonas isolates obtained from fish. However, there are discrepancies between analyses of different phylogenetic markers, indicating there are still difficulties in genetic identification of the genus Aeromonas using the housekeeping genes used in this study. Advantages and disadvantages of each housekeeping gene should be taken into account when the gene is used for identification of Aeromonas species.

A Case Report of Imports Morphological Variation of Pinelliae Tuber Based on the Genetic Analysis (유전자 분석 기반 수입산 형태 변이 반하 유통 사례 보고)

  • Kim, Wook Jin;Choi, Goya;Noh, Sumin;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.37 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Objectives : The purpose of this study is to report that applying the genetic discrimination method to Pinelliae Tuber is suitable as a countermeasure for the limitations of morphological identification announced publicly in the Ministry of Food and Drug Safety(MFDS). Methods : Randomly selected fifty samples in Pinelliae Tuber imported from China were used for morphological and genetic identification. The morphological identification was applied method announced publicly by the MFDS. The traits of morphological identification were classified as Pinellia ternata, P. tripartita, Pinellia pedatisecta, and Typhonium flagelliforme, according to the formation of tuberous root and tuber morphology. The genetic identifications were conducted by Sequence Characterized Amplified Region(SCAR) marker and DNA barcoding analysis for cross-validation, respectively. SCAR marker was verified according to the presence or absence of amplicon through PCR amplification using species-specific primers. DNA barcoding analysis used sequence information of the matK region. Results : As a result of the morphological identification, 27 out of 50 samples were identified as original species 'P. ternata' of genuine 'Pinelliae Tuber', and 23 were identified as adulterant species 'P. pedatisecta'. Unlike this, the genetic identification was identified as the original species 'P. ternata' in all 50 samples in the SCAR marker and matK regional sequence analysis. Conclusions : Pinelliae Tuber of morphological mutant that can not be classified by morphological identification is imported from China. The SCAR marker would be used as accurate and efficient assays for species identification of the morphological mutant.

Genetic Identification Monitoring of Cobitidae Distribution in Korea (국내에서 유통되는 미꾸리과(Cobitidae) 어종의 분자동정 모니터링)

  • Kim, Hyunsuk;Shin, Jiyoung;Yang, Junho;Cha, Eunji;Yang, Ji-young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.742-750
    • /
    • 2022
  • This study aimed to monitor the distribution of Cobitidae in Korea by the identification of species using genetic analysis. Based on the genetic analysis, Cobitidae species in four of five domestic fish farms consisted of only Chinese muddy loach Misgurnus mizolepis, but muddy loach Misgurnus anguillicaudatus was also present it in one fish farm. In the case of imported Cobitidae species, in addition to Chinese muddy loach and muddy loach, the harmful species Paramisgurnus dabryanus, was also present. Chinese muddy loach accounted for 20%, 67%, and 60% of the S6, S7, and S8 samples, respectively. An analysis of the total length, body length, and weight showed that domestic Chinese muddy loach showed higher values than imported muddy loach, and imported Chinese muddy loach showed similar values to P. dabryanus. There were no significant differences in the country of origin of the three species. Thus, the mitochondrial cytochrome c oxidase subunit I gene sequence was analyzed and compared the verification of species identification. The three species of Cobitidae were genetically divided into three groups and determined to have genetic differences. These results indicate that it is necessary to reduce the heterogeneous mixing rate through discriminating species by genetic analysis.

Identification of Cervus elaphus Species by Sequencing Analysis and BLAST Search (Cervus elaphus 종의 sequencing과 BLAST search에 의한 감별)

  • Seo, Jung-Chul;Kim, Min-Jung;Lee, Chan;Leem, Kang-Hyun
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.129-133
    • /
    • 2006
  • Objectives : Cervus elaphus species are some of the most medicinally important genera in the Oriental medicine. This study was performed to determine if Cenvus elaphus species could be identified by sequencing analysis and to verify Basic Local Alignment Search Tool (BLAST) search, which was used to assess genetic identification. Methods : The DNAs of Cervus elaphus species were extracted, amplified by PCR, and sequenced. The DNAs of Cervus species were identified by BLAST search in website. Results : By BLAST search one of Cervus elaphus species was identified as Cervus elaphussibericus but the other was identified as Cervus elaphus nelsoni. This work showed that identification can efficiently be performed by BLAST search. Conclusion : These results suggest that sequencing following BLAST search might be able to provide the identification of Cervus elaphus species.

  • PDF

Improved characterization of Clematis based on new chloroplast microsatellite markers and nuclear ITS sequences

  • Liu, Zhigao;Korpelainen, Helena
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.889-897
    • /
    • 2018
  • Currently, there is a lack of genetic markers capable of effectively detecting polymorphisms in Clematis. Therefore, we developed new markers to investigate inter- and intraspecific diversity in Clematis. Based on the complete chloroplast genome of Clematis terniflora, simple sequence repeats were explored and primer pairs were designed for all ten adequate repeat regions (cpSSRs), which were tested in 43 individuals of 11 Clematis species. In addition, the nuclear ITS region was sequenced in 11 Clematis species. Seven cpSSR loci were found to be polymorphic in the genus and serve as markers that can distinguish different species and be used in different genetic analyses, including cultivar identification to assist the breeding of new ornamental cultivars.

Molecular Identification of Korean Mountain Ginseng Using an Amplification Refractory Mutation System (ARMS)

  • In, Jun-Gyo;Kim, Min-Kyeoung;Lee, Ok-Ran;Kim, Yu-Jin;Lee, Beom-Soo;Kim, Se-Young;Kwon, Woo-Seang;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • Expensive herbs such as ginseng are always a possible target for fraudulent labeling. New mountain ginseng strains have occasionally been found deep within mountain areas and commercially traded at exorbitant prices. However, until now, no scientific basis has existed to distinguish such ginseng from commonly cultivated ginseng species other than by virtue of being found within deep mountain areas. Polymerase chain reaction (PCR) analysis of the internal transcribed spacer has been shown to be an appropriate method for the identification of the most popular species (Panax ginseng) in the Panax ginseng genus. A single nucleotide polymorphism (SNP) has been identified between three newly found mountain ginseng (KGD4, KGD5, and KW1) and already established Panax species. Specific PCR primers were designed from this SNP site within the sequence data and used to detect the mountain ginseng strains via multiplex PCR. The established multiplex-PCR method for the simultaneous detection of newly found mountain ginseng strains, Korean ginseng, and foreign ginseng in a single reaction was determined to be effective. This study is the first report of scientific discrimination of "mountain ginsengs" and describes an effective method of identification for fraud prevention and for uncovering the possible presence of other, cheaper ginseng species on the market.

Genetic Variation and Species Identification of Thai Boesenbergia (Zingiberaceae) Analyzed by Chloroplast DNA Polymorphism

  • Techaprasan, Jiranan;Ngamriabsakul, Chatchai;Klinbunga, Sirawut;Chusacultanachai, Sudsanguan;Jenjittikul, Thaya
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.361-370
    • /
    • 2006
  • Genetic variation and molecular phylogeny of 22 taxa representing 14 extant species and 3 unidentified taxa of Boesenbergia in Thailand and four outgroup species (Cornukaempferia aurantiflora, Hedychium biflorum, Kaempferia parviflora, and Scaphochlamys rubescens) were examined by sequencing of 3 chloroplast (cp) DNA regions (matK, psbA-trnH and petA-psbJ). Low interspecific genetic divergence (0.25-1.74%) were observed in these investigated taxa. The 50% majority-rule consensus tree constructed from combined chloroplast DNA sequences allocated Boesenbergia in this study into 3 different groups. Using psbA-1F/psbA-3R primers, an insertion of 491 bp was observed in B. petiolata. Restriction analysis of the amplicon (380-410 bp) from the remaining species with Rsa I further differentiated Boesenbergia to 2 groupings; I (B. basispicata, B. longiflora, B. longipes, B. plicata, B. pulcherrima, B. tenuispicata, B. thorelii, B. xiphostachya, Boesenbergia sp.1 and Boesenbergia sp.3; phylogenetic clade A) that possesses a Rsa I restriction site and II (B. curtisii, B. regalis, B. rotunda and Boesenbergia sp.2; phylogenetic clade B and B. siamensis; phylogenetic clade C) that lacks a restriction site of Rsa I. Single nucleotide polymorphism (SNP) and indels found can be unambiguously applied to authenticate specie-origin of all investigated samples and revealed that Boesenbergia sp.1, Boesenbergia sp.2 and B. pulcherrima (Mahidol University, Kanchanaburi), B. cf. pulcherrima1 (Prachuap Khiri Khan) and B. cf. pulcherrima2 (Thong Pha Phum, Kanchanaburi) are B. plicata, B. rotunda and B. pulcherrima, respectively. In addition, molecular data also suggested that Boesenbergia sp.3 should be further differentiated from B. longiflora and regarded as a newly unidentified Boesenbergia species.

Genotyping of Six Pathogenic Vibrio Species Based on RFLP of 16S rDNAs for Rapid Identification

  • Yoon, Young-Jun;Im, Kyung-Hwan;Koh, Young-Hwan;Kim, Seong-Kon;Kim, Jung-Wan
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.312-319
    • /
    • 2003
  • In an attempt to develop a method for rapid and accurate identification of six Vibrio species that are clinically important and most frequently detected in Korea, 16S rDNA restriction fragment length polymorphism (RFLP) of Vibrio type strains, as well as environmental isolates obtained from the Korean coastal area, was analyzed using ten restriction endonucleases. Digestion of the 16S rDNA fragments amplified by polymerase chain reaction (PCR) with the enzymes gave rise to 2~6 restriction patterns for each digestion for 47 Vibrio strains and isolates. An additional 2~3 restriction patterns were observed for five reference species, including Escherichia coli, Aeromonas hydrophila, A. salmonicida, Photobacterium phosphoreum, and Plesiomonas shigelloides. A genetic distance tree based on RFLP of the bacterial species correlated well with that based on 16S rDNA sequences. The very small 16S rDNA sequence difference (0.1%) between V. alginolyticus and V. parahaemolyticus was resolved clearly by RFLP with a genetic distance of more than 2%. RFLP variation within a species was also detected in the cases of V. parahaemolyticus, V. proteolyticus, and V. vulnificus. According to the RFLP analysis, six Vibrio and five reference species were assigned to 12 genotypes. Using three restriction endonucleases to analyze RFLP proved sufficient to identify the six pathogenic Vibrio species.

Molecular Identification and Effects of Temperature on Survival and Growth of Hybrids between Haliotis gigantea Gmelin (♀) and Haliotis discus hannai Reeve (♂)

  • An, Hye Suck;Han, Jong Won;Hwang, Hyun-Ju;Jeon, Hancheol;Jung, Seung-Hyun;Jo, Seonmi;Choi, Tae-Young;Hyun, Young Se;Song, Ha Yeun;Whang, Ilson
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.83-89
    • /
    • 2017
  • In abalones, interspecific hybridization has been suggested as a possible means to increase production and desired traits for the industry. In Korea, Haliotis gigantea is considered a species with a larger size and higher temperature tolerance than H. discus hannai. However, H. discus hannai is considered the most valuable and popular fishery resource due to its better acceptance and higher market prices. Thus, viable interspecific hybrids have been produced by artificial inseminating H. gigantea eggs with H. discus hannai sperm. However, the reciprocal hybrid cross was not successful. In this study, the hybridity and the growth and thermal tolerance performance of the interspecific hybrids were examined. A combination of various assays revealed maximum growth occurrence at 21℃ and the higher growth rate in the hybrids than that of H. discus hannai parent. In addition, the growth and survival at high-temperature (28℃) of the hybrids was equivalent to that of the highly tolerant H. gigantea parent, suggesting new possibilities to overcome the mass mortality in H. discus hannai during high temperature periods of summer season in Korea. Furthermore, the induced interspecific hybrid status was confirmed by the presence of species-specific bands for each parental species of the random amplified polymorphic DNA (RAPD) profiles using universal rice primer (URP), which could be used as speciesspecific markers to distinguish the hybrids and their parental species.