• 제목/요약/키워드: genetic markers

검색결과 1,461건 처리시간 0.029초

Genetic Diversity and Relationship in Soybean MDP (Mutant Diversity Pool) Revealed by TRAP and TE-TRAP Markers

  • Kim, Dong-Gun;Bae, Chang-Hyu;Kwon, Soon-Jae
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.32-32
    • /
    • 2019
  • Mutation breeding is the useful tool to improve agronomic traits in various crop species. Soybean is most important crop and is rich in protein and oil contents. Despite of the importance as economic value and various genetic resource of soybean, there have been limited studies of genetic relationship among mutant resources through radiation breeding. In this study, the agronomical phenotype for selecting various genetic resources was evaluated in 528 soybean mutant lines. As a result, 210 soybean mutants with their original cultivars were selected with various traits. We named 210 selected lines as Mutant Diversity Pool (MDP). The genetic diversity and the relationship of the MDP were investigated using TRAP and TE-TRAP markers. In TRAP analysis, sixteen primer combination (PC)s were used and a total of 551 fragments were amplified. The highest (84.00%) and the lowest (32.35%) polymorphism levels were showed in PC MIR157B+Ga5 and B14G14B+Ga3, respectively. The mean of PIC values was 0.15 ranging from 0.07 in B14G14B+Sa12 to 0.23 in MIR157B+Sa4. Phylogenetic and population structure analysis indicated that the 210 MDP lines dispersed to four groups among the wild types and their mutants. The highest genetic diversity among populations was observed between lines Paldal and 523-7 (Fst=0.409), whereas the lowest genetic diversity was between population KAS360-22 and 94seori (Fst=0.065). AMOVA showed 11.583 (21.0%) and 43.532 (79.0%) variations in inter and intra mutant population, respectively. Overall, the genetic similarity of each intra mutant populations was closer than that of inter mutant population. A total of 408 fragments were amplified in the 210 MDP using twelve PCs of TE-TRAP markers that were obtained from a combination of three TIR sequence of transposable elements (MITE-stowaway; M-s, MITE-tourist; M-t, PONG). The highest (77.42%) and the lowest (56.00%) polymorphism levels were showed in PONG+Sa4 and PONG+Sa12, respectively. The mean of PIC values was 0.15 ranging from 0.09 in M-s+Sa4 and M-s+Ga5 to 0.21 in M-t+Ga5. AMOVA of M-s showed 2.209 (20%) and 8.957 (80%) variations in inter and intra mutant population, respectively. AMOVA of M-t showed 2.766 (18%) and 12.385 (82%) variations in inter and intra mutant population, respectively. AMOVA of PONG showed 3.151 (29%) and 7.646 (71%) variations in inter and intra mutant population, respectively. According to our study, the PONG had higher inter mutant population and lower intra mutant population. This mean was that for aspect of radiation sensitivity, M-s and M-t showed higher mobility than that of PONG. Our results suggest that the TRAP and the TE-TRAP markers may be useful for assessing the genetic diversity and relationship among soybean MDP and help to improve our knowledge of soybean mutation/radiation breeding.

  • PDF

SSR을 이용한 꽃치자와 열매치자의 유전적 관계 (Genetic Relationships between Gardenia jasminoides var. radicans and G. jasminoides for. grandiflora Using ISSR Markers)

  • 허만규
    • 생명과학회지
    • /
    • 제17권1호
    • /
    • pp.24-30
    • /
    • 2007
  • 꽃치자(Gardenia jasminoides var. radicans)와 열매치자(C. jasminoides for. grandiflora)는 Gardenia속으로는 우리나라에 두 분류군밖에 없으며 열매치자는 약용, 식용, 꽃치자는 방향제로 쓰인다. 그런데 꽃이 지고 나면 형태적으로 구분이 거의 되지 않는다 ISSR분석으로 이들 종의 유전적 다양도와 집단구조를 실시하였다. 88개의 DNA 분절에서 한 분류군에만 나타나는 특이밴드가 탐지되었다. 한국의 세 야생 집단은 분리되어 있고 패치 분포를 보이지만 재배종에 비해 높은 유전적 다양성을 유지하친 있었다. 열매치자가 꽃치자보다 유전적 다양성이 높았으며 ISSR 마커로 이들 분류군이 잘 분리되었다. 또한 야생 집단이 재배 집단보다 다양성이 약간 높으나 유의성은 없었다. 이는 재배화과정에서 유전적 다양성의 일부 상실이 있었으나 인위적인 채취와 식재로 야생 집단과 재배 집단의 유전적 교류가 존재하였음을 시사한다.

Discrimination of Korean Native Chicken Lines Using Fifteen Selected Microsatellite Markers

  • Seo, D.W.;Hoque, M.R.;Choi, N.R.;Sultana, H.;Park, H.B.;Heo, K.N.;Kang, B.S.;Lim, H.T.;Lee, S.H.;Jo, C.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권3호
    • /
    • pp.316-322
    • /
    • 2013
  • In order to evaluate the genetic diversity and discrimination among five Korean native chicken lines, a total of 86 individuals were genotyped using 150 microsatellite (MS) markers, and 15 highly polymorphic MS markers were selected. Based on the highest value of the number of alleles, the expected heterozygosity (He) and polymorphic information content (PIC) for the selected markers ranged from 6 to 12, 0.466 to 0.852, 0.709 to 0.882 and 0.648 to 0.865, respectively. Using these markers, the calculated genetic distance (Fst), the heterozygote deficit among chicken lines (Fit) and the heterozygote deficit within chicken line (Fis) values ranged from 0.0309 to 0.2473, 0.0013 to 0.4513 and -0.1002 to 0.271, respectively. The expected probability of identity values in random individuals (PI), random half-sib ($PI_{half-sibs}$) and random sibs ($PI_{sibs}$) were estimated at $7.98{\times}10^{-29}$, $2.88{\times}10^{-20}$ and $1.25{\times}10^{-08}$, respectively, indicating that these markers can be used for traceability systems in Korean native chickens. The unrooted phylogenetic neighbor-joining (NJ) tree was constructed using 15 MS markers that clearly differentiated among the five native chicken lines. Also, the structure was estimated by the individual clustering with the K value of 5. The selected 15 MS markers were found to be useful for the conservation, breeding plan, and traceability system in Korean native chickens.

Sample Size and Statistical Power Calculation in Genetic Association Studies

  • Hong, Eun-Pyo;Park, Ji-Wan
    • Genomics & Informatics
    • /
    • 제10권2호
    • /
    • pp.117-122
    • /
    • 2012
  • A sample size with sufficient statistical power is critical to the success of genetic association studies to detect causal genes of human complex diseases. Genome-wide association studies require much larger sample sizes to achieve an adequate statistical power. We estimated the statistical power with increasing numbers of markers analyzed and compared the sample sizes that were required in case-control studies and case-parent studies. We computed the effective sample size and statistical power using Genetic Power Calculator. An analysis using a larger number of markers requires a larger sample size. Testing a single-nucleotide polymorphism (SNP) marker requires 248 cases, while testing 500,000 SNPs and 1 million markers requires 1,206 cases and 1,255 cases, respectively, under the assumption of an odds ratio of 2, 5% disease prevalence, 5% minor allele frequency, complete linkage disequilibrium (LD), 1:1 case/control ratio, and a 5% error rate in an allelic test. Under a dominant model, a smaller sample size is required to achieve 80% power than other genetic models. We found that a much lower sample size was required with a strong effect size, common SNP, and increased LD. In addition, studying a common disease in a case-control study of a 1:4 case-control ratio is one way to achieve higher statistical power. We also found that case-parent studies require more samples than case-control studies. Although we have not covered all plausible cases in study design, the estimates of sample size and statistical power computed under various assumptions in this study may be useful to determine the sample size in designing a population-based genetic association study.

Development of novel markers for the characterization of chicken primordial germ cells

  • Lee, Bo-Ram;Kim, Duk-Kyung;Lee, Young-Mok;Jung, Jin-Gyoung;Kim, Jin-Nam;Lee, Seon-Duk;Park, Tae-Sub;Lim, Jeong-Mook;Han, Jae-Yong
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2004년도 제21차 정기총회 및 학술발표회
    • /
    • pp.9-10
    • /
    • 2004
  • 형질전환 가금의 생산은 생체반응기(Bioreactor)가금에 의한 고부가가치의 생의약 물질을 저비용, 고효율로 생산할 수 있으며, 배 발달과정 및 유전자 조절기작 규명을 통한 학문적 이용성 등 다양한 분야에 응용될 수 있다. 형질전환 가금을 생산하기 위한 방법 중 닭의 배 발생 초기에 발생하는 성세포(정자 혹은 난자)의 전구세포인 원시생식세포를 이용한 연구가 활발하게 진행되고 있다. 그러나 이를 검증할 원시생식세포 특이적 마커의 부재로 많은 어려움을 겪고 있다. 따라서 본 연구는 원시생식세포의 특성 분석을 위해 PAS(Periodic acid-Schiff) 염색 및 특이항체 (SSEA-1,3,4 & Integrins $\alpha$6, $\beta$l) 그리고 lectins (STA, DBA, ConA, WGA)를 이용하였다. 이번 연구결과를 통한 닭 원시생식세포의 특이적 마커의 개발은 원시생식세포를 이용한 가금의 형질전환 연구에 기여할 것이다.

  • PDF

Biochemical Characterization and Genetic Diversity of Pongamia pinnata (L.) Pierre in Eastern India

  • Kumari, Kanchan;Sinha, Amrita;Singh, Sanjay;Divakara, B.N.
    • Journal of Forest and Environmental Science
    • /
    • 제29권3호
    • /
    • pp.200-210
    • /
    • 2013
  • Biochemical characteristics of 24 Pongamia pinnata genotypes (candidate plus trees) from three agroclimatic zones were estimated and molecular characterization through RAPD markers was done. Various biochemical characters viz. seed oil, total carbohydrates, protein, acid value and Iodine number recorded significant variation among different genotypes. The highest seed oil content was 41.87% while seeds of 14 genotypes recorded above average (32.11%) for the trait. Seed oil and protein content exhibited a significant positive correlation and moderate heritability. Out of the initially selected twenty-five random primers, twenty-two RAPD primers were found to be highly reproducible and produced a total of 183 loci of which 147 (80.32%) loci were polymorphic. Percentage of polymorphism varied from 44% to 100% with an average of 80.62%. High level of genetic variation was found among different genotypes of P. pinnata. Both molecular and oil content (biochemical) markers appeared useful in analyzing the extent of genetic diversity in Pongamia and the result of these analyses will help to better understand the genetic diversity and relationship among populations. Overall, the Pongamia genotypes included in the study showed a correlation with their geographical origins such that genotypes from the same region tend to have higher genetic similarity as compared to those from different regions. However, in UPGMA based Nei's analysis, some genotypes were found not to be grouped based on geographical origins possibly due to the exchange of germplasm over time between farmers across the regions. The results from oil content analyses showed that several genotypes in 'Central and Western Plateau' agroclimatic zone of Jharkhand displayed a good potential for high oil content. The study provides insight about P. pinnata populations in Jharkhand (India) and constitutes a set of useful background information that can be used as a basis for future breeding strategy and improvement of the species.

AFLP marker를 이용한 콩의 유전적 다양성과 유전분리 분석 (Diversity and Inheritance of AFLP Markers in Wild and Cultivated Soybeans)

  • 김용호;윤홍태
    • 한국자원식물학회지
    • /
    • 제17권3호
    • /
    • pp.265-271
    • /
    • 2004
  • AFLP marker의 유용성 을 알아보고자 재배콩과 야생콩을 대상으로 유전적 다양성과 유전분리 현상을 분석하였다. 공시 재료들의 polymorphism은 재배 콩과 야생 콩에서 각각 평 균 2 9%와 12.2%의 polymorphism을 보였으며, 재배 콩과 야생 콩에서 공히 유전적 다양성을 보인 DNA단편은 11개 primer 평균 24개를 나타내었다. Primer 조합별로도 polymorphism에 다양한 차이가 있었는데 평균 22.9%로 13.0-38.5%의 변이를 나타내었다. 재배 콩 간의 교잡후대(화엄풋콩 ${\times}$ PI417479) F$_2$집단에서 AFLP marker의 유전분리 양상을 분석한 결과 3 : 1의 분리 비를 따르는 것으로 판단되었다.

SSR 마커를 이용한 유럽 양송이 자원의 유전적 다양성 및 집단구조분석 (Genetic diversity and population structure of European button mushroom (Agaricus bisporus) using SSR markers)

  • 신혜란;안혜진;방준형;김준제;한세희;이화용;정종욱
    • 한국버섯학회지
    • /
    • 제18권4호
    • /
    • pp.323-330
    • /
    • 2020
  • 본 연구에서는 유럽 양송이 자원들을 SSR marker를 통해 유전적 다양성과 집단 구조, 유전적 분화에 대하여 분석하였다. 본 연구에서 유럽의 양송이 자원들은 유전적 거리기반의 4개의 그룹으로 나뉘었고 집단구조 분석을 통하여 2개의 subpopulation으로 이루어져 있었다. 본 연구에서 사용한 SSR 마커로 유럽의 양송이 자원들은 지리적 그리고 갓색으로 구분되지 않았다. 유전적 다양성은 유전적 거리기반의 그룹에서는 Group 4, 집단구조 분석을 통한 subpopulation에서는 Pop. 2의 다양성이 높았다. 그리고 양송이 자원들은 유전적 분화가 매우 낮았다. 본 연구의 결과는 차후 양송이의 육종 등에 이용 할 수 있을 것이다.

Assessment of genetic diversity using microsatellite markers to compare donkeys (Equus asinus) with horses (Equus caballus)

  • Kim, Su Min;Yun, Sung Wook;Cho, Gil Jae
    • Animal Bioscience
    • /
    • 제34권9호
    • /
    • pp.1460-1465
    • /
    • 2021
  • Objective: The study aimed to evaluate the diversity of donkey populations by comparing with the diversity of Thoroughbred and Jeju Halla horses; identified breeding backgrounds can contribute to management and conservation of donkeys in South Korea. Methods: A total of 100 horse (50 Thoroughbreds and 50 Jeju Halla horses) and 79 donkeys samples were genotyped with 15 microsatellite markers (AHT4, AHT5, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG10, LEX3, and VHL20), to identify genetic diversity and relationships among horses and donkeys. Results: The observed number of alleles per locus ranged from 1 (ASB17, HMS1) to 14 (AHT5), with a mean value of 4.87, 8.00, and 5.87 in Thoroughbreds, Jeju Halla horses, and donkeys, respectively. Of the 15 markers, AHT4, AHT5, ASB23, CA425, HMS2, HMS3, HTG4, HTG10, and LEX3 loci had relatively high polymorphism information content (PIC) values (PIC>0.5) in these three populations. Mean levels of genetic variation were HE = 0.6721 and HO = 0.6600 in Thoroughbreds, HE = 0.7898 and HO = 0.7100 in Jeju Halla horses, and HE = 0.5635 and HO = 0.4861 in donkeys. Of the 15 loci in donkeys, three loci had negative inbreeding coefficients (FIS), with a moderate mean FIS (0.138). The FIS estimate for the HTG4 marker was highest (0.531) and HMS6 marker was lowest (-0.001). The total probability of exclusion value of 15 microsatellite loci was 0.9996 in donkeys. Conclusion: Genetic cluster analysis showed that the genetic relationship among 79 donkeys was generally consistent with pedigree records. Among the three breeds, donkeys and Thoroughbred horses formed clearly different groups, but the group of Jeju Halla horses overlapped with that of Thoroughbred horses, suggesting that the loci would be suitable for donkey parentage testing. Therefore, the results of this study are a valid tool for genetic study and conservation of donkeys.

Monitoring changes in the genetic structure of Brown Tsaiya duck selected for feeding efficiency by microsatellite markers

  • Yi-Ying Chang;Hsiu-Chou Liu;Chih-Feng Chen
    • Animal Bioscience
    • /
    • 제36권3호
    • /
    • pp.417-428
    • /
    • 2023
  • Objective: Few studies have genetically monitored chickens over time, and no research has been conducted on ducks. To ensure the sustainable management of key duck breeds, we used microsatellite markers to monitor Brown Tsaiya ducks over time genetically. Methods: The second, fourth, sixth to eighth generations of the Brown Tsaiya duck selected for feeding efficiency and control lines were included in this study to investigate the genetic variations, effective population size, population structure and the differentiation between populations over time with 11 microsatellite markers derived from Brown Tsaiya duck. Results: The results showed there were a slight decrease in the genetic variations and an increase in within-population inbreeding coefficient (FIS) in both lines, but no consistent increase in FIS was observed in each line. The effective population size in the second and eighth generations was 27.2 for the selected line and 23.9 for the control line. The change in allele richness showed a downward trend over time, and the selected line was slightly lower than the control line in each generation. The number of private alleles (Np) in the selected line were higher than in the control line. Moderate differentiation was observed between the second and eighth generations in the selected line (FST = 0.0510) and the control line (FST = 0.0606). Overall, differentiation tended to increase with each generation, but genetic variation and structure did not change considerably after six generations in the two lines. Conclusion: This study provides a reference for poultry conservation and helps to implement cross-generation genetic monitoring and breeding plans in other duck breeds or lines to promote sustainable management.