• Title/Summary/Keyword: genetic markers

Search Result 1,460, Processing Time 0.043 seconds

Genetic characterization and population structure of six brown layer pure lines using microsatellite markers

  • Karsli, Taki;Balcioglu, Murat Soner
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Objective: The first stage in both breeding and programs for the conservation of genetic resources are the identification of genetic diversity in the relevant population. The aim of the present study is to identify genetic diversity of six brown layer pure chicken lines (Rhode Island Red [RIRI, RIRII], Barred Rock [BARI, BARII], Columbian Rock [COL], and line 54 [L-54]) with microsatellite markers. Furthermore, the study aims to employ its findings to discuss the possibilities for the conservation and sustainable use of these lines that have been bred as closed populations for a long time. Methods: In the present study, a total number of 180 samples belonging to RIRI (n = 30), RIRII (n = 30), BARI (n = 30), BARII (n = 30), L-54 (n = 30), and COL (n = 30) lines were genotyped using 22 microsatellite loci. Microsatellite markers are extremely useful tools in the identification of genetic diversity since they are distributed throughout the eukaryotic genome in multitudes, demonstrate co-dominant inheritance and they feature a high rate of polymorphism and repeatability. Results: In this study, we found all loci to be polymorphic and identified the average number of alleles per locus to be in the range between 4.41 (BARI) and 5.45 (RIRI); the observed heterozygosity to be in the range between 0.31 (RIRII) and 0.50 (BARII); and $F_{IS}$ (inbreeding coefficient) values in the range between 0.16 (L-54) and 0.46 (RIRII). The $F_{IS}$ values obtained in this context points out to a deviation from Hardy-Weinberg equilibrium due to heterozygote deficiency in six different populations. The Neighbour-Joining tree, Factorial Correspondence Analysis and STRUCTURE clustering analyzes showed that six brown layer lines were separated according to their genetic origins. Conclusion: The results obtained from the study indicate a medium level of genetic diversity, high level inbreeding in chicken lines and high level genetic differentiation between chicken lines.

Genetic diversity and population structure of Mongolian regional horses with 14 microsatellite markers

  • Yun, Jihye;Oyungerel, Baatartsogt;Kong, Hong Sik
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1121-1128
    • /
    • 2022
  • Objective: This study aimed to identify the genetic diversity and population structure of Mongolian horse populations according to the province of residence (Khentii, KTP; Uvs, USP; Omnogovi and Dundgovi, GOP; Khovsgol, KGP) using 14 microsatellite (MS) markers. Methods: A total of 269 whole blood samples were obtained from the four populations (KTP, USP, GOP, KGP) geographically distinct provinces. Multiplex polymerase chain reaction (PCR) was conducted using 14 MS markers (AHT4, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG6, HTG7, and VHL20), as recommended by the International Society for Animal Genetics. Capillary electrophoresis was conducted using the amplified PCR products, alleles were determined. Alleles were used for statistical analysis of genetic variability, Nei's DA genetic distance, principal coordinate analysis (PCoA), factorial corresponding analysis (FCA), and population structure. Results: On average, the number of alleles, expected heterozygosity (HExp), observed heterozygosity (HObs), and polymorphic information content among all populations were 11.43, 0.772, 0.757, and 0.737, respectively. In the PCoA and FCA, GOP, and KGP were genetically distinct from other populations, and the KTP and USP showed a close relationship. The two clusters identified using Nei's DA genetic distance analysis and population structure highlighted the presence of structurally clear genetic separation. Conclusion: Overall, the results of this study suggest that genetic diversity between KTP and USP was low, and that between GOP and KGP was high. It is thought that these results will help in the effective preservation and improvement of Mongolian horses through genetic diversity analysis and phylogenetic relationships.

Identification of Genetic Markers Distinguishing Golden Flounders from Normal Olive Flounders Paralichthys olivaceus Using Microsatellite Markers (황금색 넙치(Paralichthys olivaceus)의 발현을 예측할 수 있는 Microsatellite Marker 개발)

  • Kim, Min Sung;Kwak, Ju Ri;Kim, Tae Hwan;Han, Jae Yong;Park, Ji Been;Jo, Hyeon Kyeong;Suh, Jong-pyo;Lee, Woo-jai
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.4
    • /
    • pp.492-498
    • /
    • 2020
  • Despite its economic importance, olive flounder Paralichthys olivaceus aquaculture industry is facing a crisis with a continuous production decline. There have been many solutions to overcome the complicate predicament proposed. Increasing genetic diversity and discovering new commercial value through selective breeding are among them. The aims of the present study are to increase the selection power of the golden flounders. We examined the genetic diversity of the breeder population of golden flounders and developed selective markers for the golden flounder population. The 6 microsatellite (MS) markers were selected from melanogenesis-related genes, which are believed to be involved in the pigmentation of fish. All markers were polymorphic (except PO4) and 5 of them had PIC value of 0.6 or above. All makers had distinctive alleles indicating either normal or golden individuals. For examples, from PO4 marker, the frequency of an allele (316) in the golden population was 100% and in normal population was 0% (P<0.001). Although some more studies with more samples at the later generations should be performed to confirm this result, the 316 allele from PO4 marker could be a distinctive tool for decision of the colors in olive flounders at an early stage of the life cycle.

Evaluation of Genetic Diversity among Soybean Genotypes Using SSR and SNP

  • Lee, Suk-Ha;P. Tanya;O, Srinives;T. Toojinda;A. Vanavichit;Ha, Bo-Keun;Bae, Jeong-Suk;Moon, Jung-Kyung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.334-340
    • /
    • 2001
  • Two different types of molecular markers, simple sequence repeat (SSR) and single nucleotide polymorphism (SNP), were used to measure genetic diversity among five Korean, eight Thai, and three wild soybeans. For SSR analysis, a total of 20 markers were surveyed to detect polymorphisms. For SNP analysis, four primers were designed from consensus sequence regions on disease resistance protein homolog genes, and used to amplify the genomic region. The PCR products were sequenced. A number of polymorphic SSR and SNP bands were scored on all genotypes and their genetic similarity was measured. Clustering analysis was performed independently on both types of markers. Clustering based on SSR markers separated the genotypes into three main groups originated from Korea, Thailand, and wild soybeans. On the other hand, two main groups were classified using SNP analysis. It seemed that SSR was more informative than SNP in this study. This may be due to the fact that SNP was surveyed on the smaller genomic region than SSR. Grouping based on the combined data of both markers revealed similar results to that of SNP rather than that of SSR. This might be due to the fact that more loci from SNP were considered to measure genetic relatedness than those from the SSR.

  • PDF

Evaluation of DNA Markers for Fruit-related Traits and Genetic Relationships Based on Simple Sequence Repeat in Watermelon Accessions

  • Jin, Bingkui;Park, Girim;Choi, Youngmi;Nho, Jaejong;Son, Beunggu;Park, Younghoon
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.108-120
    • /
    • 2017
  • Modern watermelon cultivars (Citrullus lanatus [Thunb.] Matsum.& Nakai var. lanatus) have fruits with diverse phenotypes, including fruit shape, rind patterns, and flesh color. Molecular markers enable efficient selection of plants harboring desirable phenotypes. In the present study, publicly available DNA markers tightly linked to fruit shape, rind stripe pattern, and flesh color were evaluated using 85 watermelon accessions with diverse fruit phenotypes. For fruit shape, the dCAPS SUN - Cla011257 marker revealed an 81% of marker - trait match for accessions with elongated or round fruits. For rind stripe pattern, the SCAR wsb6-11marker was effective for selecting Jubilee-type rind pattern from other rind patterns. For flesh color, the Clcyb.600 and Lcyb markers derived from a mutation in the Lycopene ${\beta}$ - cyclase (Lcyb) gene, were effective at selecting red or yellow flesh. Forty-eight accessions possessing diverse fruit - related traits were selected as a reference array and their genetic relationships assessed using 16 SSR markers. At a coefficient of 0.11, the 48 accessions grouped into two major clades: Clade I and Clade II. Clade I subdivided further into subclades I - 1 and I - 2 at a coefficient of 0.39. All accessions with colored flesh were classified into Clade I, whereas those with white - flesh were classified into Clade II. Differences in fruit traits between subclades I - 1 and I - 2 were observed for rind pattern and fruit color; a majority of the accessions with Crimson-type striped or non-striped rind were grouped together in subclade I - 1, while most accessions in subclade I - 2 had a Jubilee - type rind stripe pattern. These results imply that reference array watermelon accessions possess distinguishable genetic structure based on rind stripe pattern. However, no significant grouping pattern was observed based on other fruit-related traits.

New polymorphic microsatellite markers for the endangered fern Ceratopteris thalictroides (Parkeriaceae)

  • CHO, Won-Bum;HAN, Eun-Kyeong;KWAK, Myounghai;LEE, Jung-Hyun
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.2
    • /
    • pp.129-133
    • /
    • 2018
  • Ceratopteris thalictroides is a semi-aquatic fern with a circumtropical distribution. Because this species is designated internationally on the IUCN Red List as requiring at least some concern, Korean populations are of great concern for the species' long-term survival, as they are at the northern limit of the species distribution. To establish an effective conservation strategy for those populations at the genetic level, we used the Mi-Seq platform to develop three sets of 25 polymorphic microsatellite markers for C. thalictroides, which is endangered in Korea. In populations sampled from Busan and Gochang, the number of alleles ranged from 2 to 13 (average of 5.64), and plants presented an expected heterozygosity of 0.000 to 0.860. These markers will be useful for evaluating the genetic status and conserving Korean populations of C. thalictroides more effectively.

Utilization of DNA Marker-Assisted Selection in Korean Native Animals

  • Yeo, Jong-sou;Kim, Jae-Woo;Chang, Tea-Kyung;Pake, Young-Ae;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • The recent progress od DNA technologies including DNA fingerprinting (DFP) and random amplified DNA polymorphism (RAPD) analysis make it possible to identify the specific genetic trits of animals and to analyze the genetic diversity and relatedness between or withinspecies or populations. Using those techniquse, some efforts to identify and develop the specific DNA markers based on DNA polymorphism, which are related with economic traits for Korean native animals, Hanwoo(Korean native cattle),Korean native pig and Korean native chicken, have been made in Korea for recent a few years. The developed specific DNA markers successfully characterize the Korean native animals as the unique Korean genetic sources, distinctively from other imported breeds. Some of these DNA markers have been related to some important economic traits for domestic animals, for example, growth rate and marbling for Honwoo, growth rate and back fat thinkness fornative pig, and growth rate, agg weight and agg productivity for native chicken. This means that those markers can be used in important marker-assised selection (MAS) of Korean native domestic animals and further contribute to genetically improve and breed them.

  • PDF

Haplotype Analysis of BRCA1 Gene D17S855 and D17S1322 Markers in Iranian Familial Breast Cancer Patients

  • Miresmaeili, Sayed Mohsen;Tamandani, Dor Mohammad Kordi;Kalantar, Seyed Mehdi;Moshtaghiun, Seyed Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3615-3617
    • /
    • 2016
  • Background: Breast cancer molecular analysis by linkage analysis has the advantage of facilitating early diagnosis in asymptomatic genetic carriers, with a view to the preventive follow-up of these subjects and genetic counseling. The aim of this study was to evaluate BRCA1 gene D17S855 and D17S1322 markers in breast cancer patients. Materials and Methods: A series of 85 BC patients and 85 unrelated healthy women were recruited for haplotype analysis performed using two short tandem repeat markers located within the BRCA1 gene locus. Each marker was amplified with PCR genomic DNA from each individual and fluorescently end-labeled primers. Results: Both D17S855 and D17S1322 markers included 12 kinds of alleles. Results indicate that most of the BC patients shared two common 121-150 (11.2%, RR=1.56 and p=0.02) and 121-146 (5.6%, RR=1.9 and p=0.02) haplotypes. Conclusions: Our results should be helpful to understand the haplotype phase in the BRCA1 gene and establish a genetic screening strategy in the Iranian population.

Beagle dogs parentage testing by using 22 ISAG microsatellite markers

  • Ji, Hye-jung;Kim, Eun-hee;Lee, Kyoung-kap;Kang, Tae-young;Lee, Joo-myoung;Shin, Hyoung-doo;Kim, Lyoung-hyo;Yun, Young-min
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.4
    • /
    • pp.457-460
    • /
    • 2007
  • The objective of the study was to establish routine parentage testing system in Beagle dogs using 22 ISAG (International Society for Animal Genetics) canine microsatellite markers (2005). Blood collections were obtained from a mother dog, 4 candidate father dogs and 3 offspring (n = 8). Genomic DNA samples were extracted from 8 Beagle dogs blood for PCR analysis. PCR products for the allele were analyzed by ABI 3130 DNA Sequencer and GeneScan (Ver 3.0) analysis and Genotyper (Ver. 2.1) software. The genetic relationship of mother and 3 offspring as well as one father dog among 4 candidate father dogs was confirmed by microsatellite allele analysis. The results of locus for amelogenin, which was designed for sexing, were matching with real gender among 8 Beagle dogs (female; 217/217 homozygosity, male; 179/217 heterozygosity). Twenty two ISAG microsatellite markers are useful the parentage test of Beagle dogs. In addition, amelogenin is an applicable marker to detecting real sex in dogs.

Genetic Diversity and Population Structure of Peanut (Arachis hypogaea L.) Accessions from Five Different Origins

  • Zou, Kunyan;Kim, Ki-Seung;Lee, Daewoong;Jun, Tae-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.447-456
    • /
    • 2020
  • Peanut is an allotetraploid derived from a single recent polyploidization. Polyploidization has been reported to have caused significant loss in genetic diversity during the domestication of cultivated peanuts. Single nucleotide polymorphism (SNP)-based markers such as cleaved amplified polymorphic sequences (CAPS) derived from next-generation sequencing (NGS) have been developed and widely applied for breeding and genetic research in peanuts. This study aimed to identify the genetic diversity and population structure using 30 CAPS markers and 96 peanut accessions from five different origins. High genetic dissimilarities were detected between the accessions from Korea and those from the other three South American origins generally regarded as the origin of peanuts, while the accessions from Brazil and Argentina presented the lowest genetic dissimilarity. Based on the results of the present study, accessions from Korea have unique genetic variation compared to those from other countries, while accessions from the other four origins are closely related. Our study identified the genetic differentiation in 96 peanut accessions from five different origins, and this study also showed the successful application of SNP information derived from re-sequencing based on NGS technology.