• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.024 seconds

Heading Control of Cargo Ship using Model Reference Genetic Adaptive Fuzzy Controller(MRGAFC) (기준 모델 유전 적응 퍼지 제어기를 이용한 화물선의 회두각 제어)

  • Jeong, Jong-Won;Kim, Tae-Woo;Song, Ho-Sin;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2618-2620
    • /
    • 2003
  • 본 연구에서 구현하고자 하는 선박의 회두각 제어의 경우 파도, 바람, 조류 등의 외란의 영향을 많이 받고 있을 뿐만 아니라 그 운동 특성 역시 비선형이므로 적절한 파라미터의 선정과 제어기 구성에 어려움이 따른다. 이의 해결을 위해 K. M. Passino 등에 의해 비선형 특성을 지닌 기준 모델 적응 퍼지 알고리즘을 적용하여 제어기 구성을 시도한바 있고, 국내에서도 김종화 등에 의해 유사한 방법이 시도되어졌다. 본 연구에서는 이상의 시도에서 기준 모델에 의한 제어기 파라미터의 동정의 방법으로 사용한 M.I.T 룰 대신 일반적인 유전 알고리즘에 의해 퍼지 제어기의 파라미터를 동정하고자 한다. 유전 알고리즘에 기반한 기준 모델 적응 퍼지 제어기(MRGAFC) 알고리즘을 제안하며, 이의 검증을 위하여 화물선 회두각의 조향 문제에 이를 적용하여 종래의 방법들과 비교를 수행할 것이다.

  • PDF

Maneuvering Target Tracking Using the IMM method Based on Intelligent Input Estimation (지능형 입력추정에 기반한 상호작용 다중모델 기법을 이용한 기동표적 추적)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2085-2087
    • /
    • 2003
  • A new interacting multiple model (IMM) method based on intelligent input estimation (IIE) is proposed for tracking a maneuvering target. In the proposed method, the acceleration level of each sub-filter is determined by IIE using the fuzzy system, which is optimized by the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method in computer simulations.

  • PDF

Fuzzy Modeling Using DNA-Coded Genetic Algorithm (DNA 코드 유전화 알고리즘을 이용한 퍼지 모델링)

  • Yu, Jin-Young;Lee, Yeun-Woo;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2295-2297
    • /
    • 2003
  • 본 논문에서는 발생모델인 DNA 코딩 기법과 진화 모델인 유전자 알고리즘을 이용한 비선형 시스템의 퍼지 모델 링에 대한 새로운 방법을 제안한다. DNA 코딩 기법은 실제 생체 분자 (bio-molecule)를 계산의 도구로 사용하는 새로운 계산 방법으로, 진화 연산과 결합하여 인공지능의 새로운 분야로 부각되고 있다. 그러나, 실제 생체 분자를 계산의 도구로 사용하기 때문에 기존의 컴퓨터에 적용하기 어렵고, 단순히 합성과 분리라는 간단한 방법으로 해를 구하기 때문에 보다 효과적인 알고리즘을 개발하여야 할 필요성이 있다. 따라서 본 논문에서는 DNA 코드 유전자 알고리즘을 제안하며, 제안된 방법은 비선형 시스템의 퍼지 모델링에 적용하였으며, 기존의 유전자 알고리즘과 비교를 통하여 그 우수성을 입증하였다.

  • PDF

Design of Fuzzy-Neural Network controller using Genetic Algorithms (유전 알고리즘을 이용한 퍼지-신경망 제어기 설계)

  • 추연규;김현덕
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.321-326
    • /
    • 1998
  • 본 논문에서는 정밀 제어와 온-라인 제어를 위하여 유전 알고리즘을 이용한 퍼지-신경망 제어기를 제안하였다. 제안된 제어기의 설계방법은 다음과 같은 3단계의 동조과정으로 구성한다. 1) 퍼지 제어기의 비퍼지화 연산을 신경망을 이용하여 함수근사화 시킨 후, 퍼지-신경망 제어기를 구성한다. 2) 플랜트에 적합한 퍼지 소속함수의 형태를 얻기 위해 유전 알고리즘을 이용하여 근사화된 퍼지 소속함수를 찾는다. 3) 근사화된 초기 퍼지 소속함수를 퍼지-신경망 제어기에 의해 적응학습으로 최적의 퍼지 소속함수를 얻고, 또한 플랜트의 파라미터 변동이나 외부환경의 변화에 대해 적응할 수 있도록 최적의 퍼지 소속함수를 추정한다. 제안된 제어기의 성능을 평가하기 위하여 DC 서보모터의 속도제어에 적용하였다.

  • PDF

Sturctural Developments of Improved IG-based Fuzzy Systems Using Symbolic Coded Genetic Algorithms (기호코딩기반 유전자 알고리즘을 이용한 개선된 정보입자 기반 퍼지시스템의 구조 개발)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1813-1814
    • /
    • 2007
  • 본 논문에서는 개선된 정보입자 기반 퍼지모델과 기호코딩 기반 유전자 알고리즘을 이용한 퍼지모델의 구조동정을 다룬다. 클러스터링 방법을 이용하여 초기 데이터를 분할하고 각 클러스터에 대한 중심값과 소속정도에 대한 정보가 취득되며 이 취득된 정보입자는 퍼지모델에 적용된다. 또한 많은 입력변수를 갖는 시스템에 대하여 발생되는 고차원성 문제를 해결하기 위하여 기호코딩 기반 유전자 알고리즘을 이용하여 적절한 입력변수, 멤버쉽 함수의 수, 후반부 다항식의 차수등을 효율적으로 선택할 수 있는 구조동정방법을 제시한다.

  • PDF

Genetic Optimization of IG-based Fuzzy Model by Means of Improved Consecutive Tuning Method (개선된 연속적 동조 방법에 의한 정보 입자 퍼지 모델의 최적화)

  • Park, Geon-Jun;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.370-373
    • /
    • 2006
  • 본 논문에서는 복잡하고 비선형적인 시스템에 대하여 구체적이고 체계적인 방법에 의한 퍼지 모델을 설계하기 위해 유전자알고리즘을 이용하여 전반부 및 후반부의 구조와 파라미터 동정한다. 정보 입자 기반 퍼지 모델의 구조를 동정하기 위하여 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽함수의 수, 그리고 후반부 형태를 결정하고, 파라미터를 동정하기 위하여 전반부 멤버쉽 파라미터를 동조하여 최적의 퍼지 모델을 설계한다. 또한 구조 동정 및 파라미터 동정에 있어서 개선된 연속적 동조 방법으로 접근하여 정보 입자 기반 퍼지 모델의 최적 동정을 도모한다. 마지막으로 제안된 퍼지 모델은 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns

  • Seitllari, A.;Naser, M.Z.
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • Concrete undergoes a series of thermo-based physio-chemical changes once exposed to elevated temperatures. Such changes adversely alter the composition of concrete and oftentimes lead to fire-induced explosive spalling. Spalling is a multidimensional, complex and most of all sophisticated phenomenon with the potential to cause significant damage to fire-exposed concrete structures. Despite past and recent research efforts, we continue to be short of a systematic methodology that is able of accurately assessing the tendency of concrete to spall under fire conditions. In order to bridge this knowledge gap, this study explores integrating novel artificial intelligence (AI) techniques; namely, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA), together with traditional statistical analysis (multilinear regression (MLR)), to arrive at state-of-the-art procedures to predict occurrence of fire-induced spalling. Through a comprehensive datadriven examination of actual fire tests, this study demonstrates that AI techniques provide attractive tools capable of predicting fire-induced spalling phenomenon with high precision.

Application of Artificial Intelligence for the Management of Oral Diseases

  • Lee, Yeon-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.2
    • /
    • pp.107-108
    • /
    • 2022
  • Artificial intelligence (AI) refers to the use of machines to mimic intelligent human behavior. It involves interactions with humans in clinical settings, and augmented intelligence is considered as a cognitive extension of AI. The importance of AI in healthcare and medicine has been emphasized in recent studies. Machine learning models, such as genetic algorithms, artificial neural networks (ANNs), and fuzzy logic, can learn and examine data to execute various functions. Among them, ANN is the most popular model for diagnosis based on image data. AI is rapidly becoming an adjunct to healthcare professionals and is expected to be human-independent in the near future. The introduction of AI to the diagnosis and treatment of oral diseases worldwide remains in the preliminary stage. AI-based or assisted diagnosis and decision-making will increase the accuracy of the diagnosis and render treatment more precise and personalized. Therefore, dental professionals must actively initiate and lead the development of AI, even if they are unfamiliar with it.

LQG modeling and GA control of structures subjected to earthquakes

  • Chen, ZY;Jiang, Rong;Wang, Ruei-Yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.421-430
    • /
    • 2022
  • This paper addresses the stochastic control problem of robots within the framework of parameter uncertainty and uncertain noise covariance. First of all, an open circle deterministic trajectory optimization issue is explained without knowing the unequivocal type of the dynamical framework. Then, a Linear Quadratic Gaussian (LQG) controller is intended for the ostensible trajectory-dependent linearized framework, to such an extent that robust hereditary NN robotic controller made out of the Kalman filter and the fuzzy controller is blended to ensure the asymptotic stability of the non-continuous controlled frameworks. Applicability and performance of the proposed algorithm shown through simulation results in the complex systems which are demonstrate the feasible to improve the performance by the proposed approach.

Design of Multi-FPNN Model Using Clustering and Genetic Algorithms and Its Application to Nonlinear Process Systems (HCM 클러스처링과 유전자 알고리즘을 이용한 다중 FPNN 모델 설계와 비선형 공정으로의 응용)

  • 박호성;오성권;안태천
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.343-350
    • /
    • 2000
  • In this paper, we propose the Multi-FPNN(Fuzzy Polynomial Neural Networks) model based on FNN and PNN(Polyomial Neural Networks) for optimal system identifacation. Here FNN structure is designed using fuzzy input space divided by each separated input variable, and urilized both in order to get better output performace. Each node of PNN structure based on GMDH(Group Method of Data handing) method uses two types of high-order polynomials such as linearane and quadratic, and the input of that node uses three kinds of multi-variable inputs such as linear and quadratic, and the input of that node and Genetic Algorithms(GAs) to identify both the structure and the prepocessing of parameters of a Multi-FPNN model. Here, HCM clustering method, which is carried out for data preproessing of process system, is utilized to determine the structure method, which is carried out for data preprocessing of process system, is utilized to determance index with a weighting factor is used to according to the divisions of input-output space. A aggregate performance inddex with a wegihting factor is used to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of this aggregate abjective function which it is acailable and effective to design to design and optimal Multi-FPNN model. The study is illustrated with the aid of two representative numerical examples and the aggregate performance index related to the approximation and generalization abilities of the model is evaluated and discussed.

  • PDF