• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.021 seconds

Emerging Data Management Tools and Their Implications for Decision Support

  • Eorm, Sean B.;Novikova, Elena;Yoo, Sangjin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.2 no.2
    • /
    • pp.189-207
    • /
    • 1997
  • Recently, we have witnessed a host of emerging tools in the management support systems (MSS) area including the data warehouse/multidimensinal databases (MDDB), data mining, on-line analytical processing (OLAP), intelligent agents, World Wide Web(WWW) technologies, the Internet, and corporate intranets. These tools are reshaping MSS developments in organizations. This article reviews a set of emerging data management technologies in the knowledge discovery in databases(KDD) process and analyzes their implications for decision support. Furthermore, today's MSS are equipped with a plethora of AI techniques (artifical neural networks, and genetic algorithms, etc) fuzzy sets, modeling by example , geographical information system(GIS), logic modeling, and visual interactive modeling (VIM) , All these developments suggest that we are shifting the corporate decision making paradigm form information-driven decision making in the1980s to knowledge-driven decision making in the 1990s.

  • PDF

An Evolutionary Computing Approach to Building Intelligent Frauds Detection System

  • Kim, Jung-Won;Peter Bentley;Chol, Jong-Uk;Kim, Hwa-Soo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.97-108
    • /
    • 2001
  • Frauds detection is a difficult problem, requiring huge computer resources and complicated search activities Researchers have struggled with the problem. Even though a fee research approaches have claimed that their solution is much better than others, research community has not found 'the best solution'well fitting every fraud. Because of the evolving nature of the frauds. a novel and self-adapting method should be devised. In this research a new approach is suggested to solving frauds in insurance claims credit card transaction. Based on evolutionary computing approach, the method is itself self-adjusting and evolving enough to generate a new self of decision-makin rules. We believe that this new approach will provide a promising alternative to conventional ones, in terms of computation performance and classification accuracy.

  • PDF

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

Predicting Audit Reports Using Meta-Heuristic Algorithms

  • Valipour, Hashem;Salehi, Fatemeh;Bahrami, Mostafa
    • Journal of Distribution Science
    • /
    • v.11 no.6
    • /
    • pp.13-19
    • /
    • 2013
  • Purpose - This study aims to predict the audit reports of listed companies on the Tehran Stock Exchange by using meta-heuristic algorithms. Research design, data, methodology - This applied research aims to predict auditors reports' using meta-heuristic methods (i.e., neural networks, the ANFIS, and a genetic algorithm). The sample includes all firms listed on the Tehran Stock Exchange. The research covers the seven years between 2005 and 2011. Results - The results show that the ANFIS model using fuzzy clustering and a least-squares back propagation algorithm has the best performance among the tested models, with an error rate of 4% for incorrect predictions and 96% for correct predictions. Conclusion - A decision tree was used with ten independent variables and one dependent variable the less important variables were removed, leaving only those variables with the greatest effect on auditor opinion (i.e., net-profit-to-sales ratio, current ratio, quick ratio, inventory turnover, collection period, and debt coverage ratio).

Real-Time Estimation of TCSC Quantity for Improvement of Transient Stability Energy Margin (과도안정도 에너지 마진 향상을 위한 TCSC 적정치의 실시간 산정)

  • Kim, Soo-Nam;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.242-244
    • /
    • 2000
  • This paper presents a method for real-time estimation of TCSC quantity in order to enhance the power system transient stability energy margin using fuzzy neural network in multi-machine system. This paper has two parts, the first part is to estimate the energy margin. To set critical energy, we use the potential energy boundary surface(PEBS) method which one of the transient energy function(TEF) method. And the second is to determine the TCSC quantify and the line to be injected. In order to make training data in this step, we use genetic algorithm. The proposed method is applied to 6-bus, 7-line, 4-machine model system to show its effectiveness.

  • PDF

Genetic Approach for Optimal Identification of IG-based Fuzzy Model (정보 입자 기반 퍼지 모멸의 최적 동정을 위한 유전론적 접근)

  • Park, Keon-Jun;Oh, Sung-Kwun;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2095-2096
    • /
    • 2006
  • 본 논문에서는 복잡하고 비선형적인 시스템에 대하여 구체적이고 체계적인 방법에 의한 퍼지 모델을 동정하기 위해 유전자알고리즘을 이용하여 전반부 및 후반부의 구조와 파라미터 동정하기 위한 유전론적 접근을 소개한다. 정보 입자 기반 퍼지 모델의 구조를 동정하기 위하여 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽함수의 수, 그리고 후반부 형태를 결정하고, 파라미터를 동정하기 위하여 전반부 멤버쉽 파라미터를 동조하여 최적의 퍼지 모델을 설계한다. 또한 구조 동정 및 파라미터 동정에 있어서 개별적인 방법과 동시적인 방법으로 접근하여 정보 입자 기반 퍼지 모델의 최적 동정을 도모한다. 마지막으로 제안된 퍼지 모델은 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

A Study on Fuzzy-Genetic Contric Algorithm for Wheeled-Mobile Robot (구륜 이동 로보트의 퍼지-유전 제어알고리즘에 관한 연구)

  • 김성희;박세승;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.33-36
    • /
    • 1997
  • 로봇이 지니는 지역적 한계성을 극복하기 위하여 구륜 이동용 로봇에 대한 연구가 전세계적으로 진행되어지고 있으나, 구륜이동로보트는 모델링의 불활실성이나 nonholomic등의 제약조건에 의하여 제어기의 설계시 많은 문제들을 지니게 된다. [1][2]. 이러한 어려움을 해결하기 위해 퍼지 알고리즘을 이용한 제어기 설계가 이루어지고 있으나 제한된 범위게 머무르고 있는 상황이다. 본 연구에서는 유전알고리즘에 근거하여 소속함수 및 규칙부의 자율적 조졸을 수행하는 구륜이동로보트의 퍼지 제어기를 한다. 제시된 알고리즘에서 퍼지 입출력 소속함수의 조절을 각각 독립적으로 이루어지며, 출력 소속함수의 유사지표에 근거하여 규칙부의 조절이 이루어진다.

  • PDF

Design of Intelligent Fuzzy Controller for Nonlinear System Using Genetic Algorithm (유전 알고리즘을 이용한 비선형 시스템의 지능형 퍼지 제어기 설계)

  • 김문환;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.247-250
    • /
    • 2004
  • 본 논문은 비선형 시스템의 새로운 퍼지 제어기 설계 기법을 제안한다. 퍼지 제어기는 비선형 시스템을 제어하는데 많이 사용되는 기법 중에 하나이다. 퍼지 제어기를 설계하는 것은 시스템에 대한 깊은 수학적인 접근이 필요로 하기 때문에 수학적 배경 없이 설계하기 힘들다. 본 논문에서는 이를 해결하기 위해 길은 수학적인 접근이 아닌 지능적인 접근 방법을 사용하여 안정화된 퍼지 제어기의 설계하는 기법을 제안한다. 제안된 기법은 퍼지 제어기의 안정화 조건을 만족시키는 제어 파라메터를 전략 기반 유전 알고리즘을 사용하여 동정한다. 전략 기반 유전 알고리즘은 제어기의 안정화 조건을 만족시키는 해를 찾기 위해 전략적으로 교차와 돌연변이를 변화시킨다. 최종적으로 모의 실험을 통해 제안된 기법의 우수성을 확인한다.

  • PDF

Optimal design of fuzzy inference systems based on genetic granulation (진화 Granule 기반 퍼지추론 시스템의 최적 설계)

  • 박건준;이동윤;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.269-272
    • /
    • 2004
  • 본 논문은 비선형 시스템의 퍼지모델을 위해 정보 granules 기반 퍼지 추론 시스템의 새로운 설계 및 이의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 둥에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCM 클러스터링 방법에 의해 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되며 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 제안된 비선형 모델의 성능평가는 수치적인 예를 통해 비교 평가한다.

  • PDF

Fuzzy-Neural Network Modeling of Nonlinear Systems using Genetic Algorithms (유전자 알고리즘을 이용한 비선형 시스템의 퍼지-신경 회로망 모델링)

  • 이승형;최용준;김주웅;김한웅;김경수;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.202-207
    • /
    • 1998
  • 본 논문에서는 유전자 알고리즘을 이용하여 불확실한 비선형 시스템의 퍼지-신경 회로망 모델링을 제안하였다. 제안한 퍼지-신경 회로망 모델링을 위한 학습 알고리즘은 다음과 같은 세 단계로 나누어 진행한다. 첫 번째 단계에서는 퍼지 모델의 소속 함수의 중심간과 표준편차를 구하여 초기 퍼지소속 함수를 결정한다. 두 번째 단계에서는 새로운 알고리즘을 통하여 언어적 퍼지 규칙을 만든다. 마지막 세 번째 단계에서는 유전자 알고리즘을 이용하여 중심값과 표준편차를 최적화함으로써 퍼지 모델의 소속 함수를 조절한다. 제안된 유전자 알고리즘의 장점은 흔히 신경 회로망에서 널리 쓰이는 역전파 알고리즘이 갖는 지역 최소점에 빠지는 현상이 없다는 것이다. 제안한 알고리즘의 유용성을 확인하기 위하여 일반적으로 가장 많이 쓰이는 비선형 시스템에 대하여 시뮬레이션 하여 확인하였다.

  • PDF