Journal of Korea Society of Industrial Information Systems
/
v.2
no.2
/
pp.189-207
/
1997
Recently, we have witnessed a host of emerging tools in the management support systems (MSS) area including the data warehouse/multidimensinal databases (MDDB), data mining, on-line analytical processing (OLAP), intelligent agents, World Wide Web(WWW) technologies, the Internet, and corporate intranets. These tools are reshaping MSS developments in organizations. This article reviews a set of emerging data management technologies in the knowledge discovery in databases(KDD) process and analyzes their implications for decision support. Furthermore, today's MSS are equipped with a plethora of AI techniques (artifical neural networks, and genetic algorithms, etc) fuzzy sets, modeling by example , geographical information system(GIS), logic modeling, and visual interactive modeling (VIM) , All these developments suggest that we are shifting the corporate decision making paradigm form information-driven decision making in the1980s to knowledge-driven decision making in the 1990s.
Kim, Jung-Won;Peter Bentley;Chol, Jong-Uk;Kim, Hwa-Soo
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.97-108
/
2001
Frauds detection is a difficult problem, requiring huge computer resources and complicated search activities Researchers have struggled with the problem. Even though a fee research approaches have claimed that their solution is much better than others, research community has not found 'the best solution'well fitting every fraud. Because of the evolving nature of the frauds. a novel and self-adapting method should be devised. In this research a new approach is suggested to solving frauds in insurance claims credit card transaction. Based on evolutionary computing approach, the method is itself self-adjusting and evolving enough to generate a new self of decision-makin rules. We believe that this new approach will provide a promising alternative to conventional ones, in terms of computation performance and classification accuracy.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.10
no.4
/
pp.314-318
/
2010
Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.
Purpose - This study aims to predict the audit reports of listed companies on the Tehran Stock Exchange by using meta-heuristic algorithms. Research design, data, methodology - This applied research aims to predict auditors reports' using meta-heuristic methods (i.e., neural networks, the ANFIS, and a genetic algorithm). The sample includes all firms listed on the Tehran Stock Exchange. The research covers the seven years between 2005 and 2011. Results - The results show that the ANFIS model using fuzzy clustering and a least-squares back propagation algorithm has the best performance among the tested models, with an error rate of 4% for incorrect predictions and 96% for correct predictions. Conclusion - A decision tree was used with ten independent variables and one dependent variable the less important variables were removed, leaving only those variables with the greatest effect on auditor opinion (i.e., net-profit-to-sales ratio, current ratio, quick ratio, inventory turnover, collection period, and debt coverage ratio).
This paper presents a method for real-time estimation of TCSC quantity in order to enhance the power system transient stability energy margin using fuzzy neural network in multi-machine system. This paper has two parts, the first part is to estimate the energy margin. To set critical energy, we use the potential energy boundary surface(PEBS) method which one of the transient energy function(TEF) method. And the second is to determine the TCSC quantify and the line to be injected. In order to make training data in this step, we use genetic algorithm. The proposed method is applied to 6-bus, 7-line, 4-machine model system to show its effectiveness.
본 논문에서는 복잡하고 비선형적인 시스템에 대하여 구체적이고 체계적인 방법에 의한 퍼지 모델을 동정하기 위해 유전자알고리즘을 이용하여 전반부 및 후반부의 구조와 파라미터 동정하기 위한 유전론적 접근을 소개한다. 정보 입자 기반 퍼지 모델의 구조를 동정하기 위하여 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽함수의 수, 그리고 후반부 형태를 결정하고, 파라미터를 동정하기 위하여 전반부 멤버쉽 파라미터를 동조하여 최적의 퍼지 모델을 설계한다. 또한 구조 동정 및 파라미터 동정에 있어서 개별적인 방법과 동시적인 방법으로 접근하여 정보 입자 기반 퍼지 모델의 최적 동정을 도모한다. 마지막으로 제안된 퍼지 모델은 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1997.10a
/
pp.33-36
/
1997
로봇이 지니는 지역적 한계성을 극복하기 위하여 구륜 이동용 로봇에 대한 연구가 전세계적으로 진행되어지고 있으나, 구륜이동로보트는 모델링의 불활실성이나 nonholomic등의 제약조건에 의하여 제어기의 설계시 많은 문제들을 지니게 된다. [1][2]. 이러한 어려움을 해결하기 위해 퍼지 알고리즘을 이용한 제어기 설계가 이루어지고 있으나 제한된 범위게 머무르고 있는 상황이다. 본 연구에서는 유전알고리즘에 근거하여 소속함수 및 규칙부의 자율적 조졸을 수행하는 구륜이동로보트의 퍼지 제어기를 한다. 제시된 알고리즘에서 퍼지 입출력 소속함수의 조절을 각각 독립적으로 이루어지며, 출력 소속함수의 유사지표에 근거하여 규칙부의 조절이 이루어진다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.247-250
/
2004
본 논문은 비선형 시스템의 새로운 퍼지 제어기 설계 기법을 제안한다. 퍼지 제어기는 비선형 시스템을 제어하는데 많이 사용되는 기법 중에 하나이다. 퍼지 제어기를 설계하는 것은 시스템에 대한 깊은 수학적인 접근이 필요로 하기 때문에 수학적 배경 없이 설계하기 힘들다. 본 논문에서는 이를 해결하기 위해 길은 수학적인 접근이 아닌 지능적인 접근 방법을 사용하여 안정화된 퍼지 제어기의 설계하는 기법을 제안한다. 제안된 기법은 퍼지 제어기의 안정화 조건을 만족시키는 제어 파라메터를 전략 기반 유전 알고리즘을 사용하여 동정한다. 전략 기반 유전 알고리즘은 제어기의 안정화 조건을 만족시키는 해를 찾기 위해 전략적으로 교차와 돌연변이를 변화시킨다. 최종적으로 모의 실험을 통해 제안된 기법의 우수성을 확인한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.269-272
/
2004
본 논문은 비선형 시스템의 퍼지모델을 위해 정보 granules 기반 퍼지 추론 시스템의 새로운 설계 및 이의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 둥에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCM 클러스터링 방법에 의해 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되며 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 제안된 비선형 모델의 성능평가는 수치적인 예를 통해 비교 평가한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
1998.11a
/
pp.202-207
/
1998
본 논문에서는 유전자 알고리즘을 이용하여 불확실한 비선형 시스템의 퍼지-신경 회로망 모델링을 제안하였다. 제안한 퍼지-신경 회로망 모델링을 위한 학습 알고리즘은 다음과 같은 세 단계로 나누어 진행한다. 첫 번째 단계에서는 퍼지 모델의 소속 함수의 중심간과 표준편차를 구하여 초기 퍼지소속 함수를 결정한다. 두 번째 단계에서는 새로운 알고리즘을 통하여 언어적 퍼지 규칙을 만든다. 마지막 세 번째 단계에서는 유전자 알고리즘을 이용하여 중심값과 표준편차를 최적화함으로써 퍼지 모델의 소속 함수를 조절한다. 제안된 유전자 알고리즘의 장점은 흔히 신경 회로망에서 널리 쓰이는 역전파 알고리즘이 갖는 지역 최소점에 빠지는 현상이 없다는 것이다. 제안한 알고리즘의 유용성을 확인하기 위하여 일반적으로 가장 많이 쓰이는 비선형 시스템에 대하여 시뮬레이션 하여 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.