• Title/Summary/Keyword: genetic algorithm optimization

Search Result 1,871, Processing Time 0.028 seconds

Static Compliance Analysis & Multi-Objective Optimization of Machine Tool Structures Using Genetic Algorithm(II) (유전자 알고리듬을 이용한 공작기계구조물의 정강성 해석 및 다목적 함수 최적화(II))

  • 이영우;성활경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.231-236
    • /
    • 2001
  • The goal of multiphase optimization of machine structure is to obtain 1) light weight, 2) statically and dynamically rigid structure. The entire optimization process is carried out in two phases. In the first phase, multiple optimization problem with two objective functions is treated using pareto genetic algorithm. Two objective functions are weight of the structure, and static compliance. In the second phase, maximum receptance is minimized using genetic algorithm. The method is applied to design of quill type machine structure with back column.

  • PDF

OPTIMUM DESIGN OF AN AUTOMOTIVE CATALYTIC CONVERTER FOR MINIMIZATION OF COLD-START EMISSIONS USING A MICRO GENETIC ALGORITHM

  • Kim, Y.D.;Kim, W.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.563-573
    • /
    • 2007
  • Optimal design of an automotive catalytic converter for minimization of cold-start emissions is numerically performed using a micro genetic algorithm for two optimization problems: optimal geometry design of the monolith for various operating conditions and optimal axial catalyst distribution. The optimal design process considered in this study consists of three modules: analysis, optimization, and control. The analysis module is used to evaluate the objective functions with a one-dimensional single channel model and the Romberg integration method. It obtains new design variables from the control module, produces the CO cumulative emissions and the integral value of a catalyst distribution function over the monolith volume, and provides objective function values to the control module. The optimal design variables for minimizing the objective functions are determined by the optimization module using a micro genetic algorithm. The control module manages the optimal design process that mainly takes place in both the analysis and optimization modules.

An Enhanced Genetic Algorithm for Global and Local Optimization Search (전역 및 국소 최적화탐색을 위한 향상된 유전 알고리듬의 제안)

  • Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1008-1015
    • /
    • 2002
  • This paper proposes a combinatorial method to compute the global and local solutions of optimization problem. The present hybrid algorithm is the synthesis of a genetic algorithm and a local concentrate search algorithm (simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution. In addition, this algorithm can find both the global and local optimum solutions. An optimization result is presented to demonstrate that the proposed approach successfully focuses on the advantages of global and local searches. Three numerical examples are also presented in this paper to compare with conventional methods.

Optimum Allocation of Pipe Support Using Combined Optimization Algorithm by Genetic Algorithm and Random Tabu Search Method (유전알고리즘과 Random Tabu 탐색법을 조합한 최적화 알고리즘에 의한 배관지지대의 최적배치)

  • 양보석;최병근;전상범;김동조
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.71-79
    • /
    • 1998
  • This paper introduces a new optimization algorithm which is combined with genetic algorithm and random tabu search method. Genetic algorithm is a random search algorithm which can find the global optimum without converging local optimum. And tabu search method is a very fast search method in convergent speed. The optimizing ability and convergent characteristics of a new combined optimization algorithm is identified by using a test function which have many local optimums and an optimum allocation of pipe support. The caculation results are compared with the existing genetic algorithm.

  • PDF

Optimization of Side Airbag Release Algorithm by Genetic Algorithm (유전알고리듬을 이용한 측면 에어백 전개 알고리듬의 최적화)

  • 김권희;홍철기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.45-54
    • /
    • 1998
  • For proper release of side airbags, the onset of crash should be detected first. After crash detection, the algorithm has to make a decision whether the side airbag deployment is necessary. If the deployment is necessary, proper timing has to be provided for the maximum protection of driver or passenger. The side airbag release algorithm should be robust against the statistical deviations which are inherent to experimental crash test data. Deterministic optimization algorithms cannot be used for the side aribag release algorithm since the objective function cannot be expressed in a closed form. From this background, genetic algorithm has been used for the optimization. The optimization requires moderate amount of computation and gives satisfactory results.

  • PDF

The implementation of the Multi-population Genetic Algorithm using Fuzzy Logic Controller

  • Chun, Hyang-Shin;Kwon, Key-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.80-83
    • /
    • 2003
  • A Genetic algorithm is a searching algorithm that based on the law of the survival of the fittest. Multi-population Genetic Algorithms are a modified form of genetic algorithm. Therefore, experience with fuzzy logic and genetic algorithm has proven to be that a combination of them can efficiently make up for their own deficiency. The Multi-population Genetic Algorithms independently evolve subpopulations. In this paper, we suggest a new coding method that independently evolves subpopulations using the fuzzy logic controller. The fuzzy logic controller has applied two fuzzy logic controllers that are implemented to adaptively adjust the crossover rate and mutation rate during the optimization process. The migration scheme in the multi-population genetic algorithms using fuzzy logic controllers is tested for a function optimization problem, and compared with other group migration schemes, therefore the groups migration scheme is then performed. The results demonstrate that the migration scheme in the multi-population genetic algorithms using fuzzy logic controller has a much better performance.

  • PDF

An Application of a Hybrid Genetic Algorithm on Missile Interceptor Allocation Problem (요격미사일 배치문제에 대한 하이브리드 유전알고리듬 적용방법 연구)

  • Han, Hyun-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.3
    • /
    • pp.47-59
    • /
    • 2009
  • A hybrid Genetic Algorithm is applied to military resource allocation problem. Since military uses many resources in order to maximize its ability, optimization technique has been widely used for analysing resource allocation problem. However, most of the military resource allocation problems are too complicate to solve through the traditional operations research solution tools. Recent innovation in computer technology from the academy makes it possible to apply heuristic approach such as Genetic Algorithm(GA), Simulated Annealing(SA) and Tabu Search(TS) to combinatorial problems which were not addressed by previous operations research tools. In this study, a hybrid Genetic Algorithm which reinforces GA by applying local search algorithm is introduced in order to address military optimization problem. The computational result of hybrid Genetic Algorithm on Missile Interceptor Allocation problem demonstrates its efficiency by comparing its result with that of a simple Genetic Algorithm.

Blade Shape Optimization of Wind Turbines Using Genetic Algorithms and Pattern Search Method (유전자 알고리즘 및 패턴 서치 방법을 이용한 풍력 터빈 블레이드의 형상 최적화)

  • Yi, Jin-Hak;Sale, Danny
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.369-378
    • /
    • 2012
  • In this study, direct-search based optimization methods are applied for blade shape optimization of wind turbines and the optimization performances of several methods including conventional genetic algorithm, micro genetic algorithm and pattern search method are compared to propose a more efficient method. For this purpose, the currently available version of HARP_Opt (Horizontal Axis Rotor Performance Optimizer) code is enhanced to rationally evaluate the annual energy production value according to control strategies and to optimize the blade shape using pattern search method as well as genetic algorithm. The enhanced HARP_Opt code is applied to obtain the optimal turbine blade shape for 1MW class wind turbines. The results from pattern search method are compared with the results from conventional genetic algorithm and also micro genetic algorithm and it is found that the pattern search method has a better performance in achieving higher annual energy production and consistent optimal shapes and the micro genetic algorithm is better for reducing the calculation time.

GBNSGA Optimization Algorithm for Multi-mode Cognitive Radio Communication Systems (다중모드 Cognitive Radio 통신 시스템을 위한 GBNSGA 최적화 알고리즘)

  • Park, Jun-Su;Park, Soon-Kyu;Kim, Jin-Up;Kim, Hyung-Jung;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.314-322
    • /
    • 2007
  • This paper proposes a new optimization algorithm named by GBNSGA(Goal-Pareto Based Non-dominated Sorting Genetic Algorithm) which determines the best configuration for CR(Cognitive Radio) communication systems. Conventionally, in order to select the proper radio configuration, genetic algorithm has been introduced so as to alleviate computational burden along the execution of the cognition cycle proposed by Mitola. This paper proposes a novel optimization algorithm designated as GBNSGA for cognitive engine which can be described as a hybrid algorithm combining well-known Pareto-based NSGA(Non-dominated Sorting Genetic Algorithm) as well as GP(Goal Programming). By conducting computer simulations, it will be verified that the proposed method not only satisfies the user's service requirements in the form of goals. It reveals the fast optimization capability and more various solutions rather than conventional NSGA or weighted-sum approach.

A comparison of three multi-objective evolutionary algorithms for optimal building design

  • Hong, Taehoon;Lee, Myeonghwi;Kim, Jimin;Koo, Choongwan;Jeong, Jaemin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.656-657
    • /
    • 2015
  • Recently, Multi-Objective Optimization of design elements is an important issue in building design. Design variables that considering the specificities of the different environments should use the appropriate algorithm on optimization process. The purpose of this study is to compare and analyze the optimal solution using three evolutionary algorithms and energy modeling simulation. This paper consists of three steps: i)Developing three evolutionary algorithm model for optimization of design elements ; ii) Conducting Multi-Objective Optimization based on the developed model ; iii) Conducting comparative analysis of the optimal solution from each of the algorithms. Including Non-dominated Sorted Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) and Random Search were used for optimization. Each algorithm showed similar range of result data. However, the execution speed of the optimization using the algorithm was shown a difference. NSGA-II showed the fastest execution speed. Moreover, the most optimal solution distribution is derived from NSGA-II.

  • PDF