• Title/Summary/Keyword: genetic algorithm operators

Search Result 172, Processing Time 0.025 seconds

The System Shape and Size Discrete Optimum Design of Space Trusses using Genetic Algorithms (Genetic Algorithms에 의한 입체트러스의 시스템 형상 및 단면 이산화 최적설계)

  • Park, Choon Wook;Kim, Myung Sun;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.577-586
    • /
    • 2001
  • The objective of this study is the development of sizing and system shape discrete optime design algorithm which is based on the genetic algorithms (GAs). The algorithm can perform both size and shape optimum designs of space trusses. The developed algorithm was implemented in a computer program. The algorithm is known to be very efficient for the discrete optimization The genetic process selects the next design points based on the survivability of the current design points The evolutionary process evaluates the survivability of the design points selected from the genetic process in the genetic process of the simple genetic algorithms there are three basic operators : reproduction cross-over and mutation operators. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to optimum design examples.

  • PDF

A Genetic Algorithm for Single Machine Scheduling with Unequal Release Dates and Due Dates (상이한 납기와 도착시간을 갖는 단일기계 일정계획을 위한 유전 알고리즘 설계)

  • 이동현;이경근;김재균;박창권;장길상
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.3
    • /
    • pp.73-82
    • /
    • 1999
  • In this paper, we address a single machine non-preemptive n-job scheduling problem to minimize the sum of earliness and tardiness with different release times and due dates. To solve the problem, we propose a genetic algorithm with new crossover and mutation operators to find the job sequencing. For the proposed genetic algorithm, the optimal pair of crossover and mutation rates is investigated. To illustrate the suitability of genetic algorithm, solutions of genetic algorithm are compared with solutions of exhaustive enumeration method in small size problems and tabu search method in large size problems. Computational results demonstrate that the proposed genetic algorithm provides the near-optimal job sequencing in the real world problem.

  • PDF

Determination of Guide Path of AGVs Using Genetic Algorithm (유전 알고리듬을 이용한 무인운반차시스템의 운반경로 결정)

  • 장석화
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.4
    • /
    • pp.23-30
    • /
    • 2003
  • This study develops an efficient heuristic which is based on genetic approach for AGVs flow path layout problem. The suggested solution approach uses a algorithm to replace two 0-1 integer programming models and a branch-and-bound search algorithm. Genetic algorithms are a class of heuristic and optimization techniques that imitate the natural selection and evolutionary process. The solution is to determine the flow direction of line in network AGVs. The encoding of the solutions into binary strings is presented, as well as the genetic operators used by the algorithm. Genetic algorithm procedure is suggested, and a simple illustrative example is shown to explain the procedure.

유전자 알고리듬을 이용한 블럭단위의 설비배치에 관한 연구

  • 우성식;박양병
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.45-48
    • /
    • 1996
  • The most research on facility layout problems ignored the actual shape of building where the activities(departments) are to be arranged. They also ignored the aisles between departments inside the building. In this paper, we present a genetic algorithm that searches a very good facility layout with horizontal aisles for two different cases with respect to the department shape. From the extensive experiments, the proposed genetic algorithm generated better layouts than the ones obtained by applying Tam's algorithm. It showed about 10% improvement of performance. We found out the best combination of genetic operators through the experiments.

  • PDF

3D Surface Reconstruction by Combining Focus Measures through Genetic Algorithm (유전 알고리즘 기반의 초점 측도 조합을 이용한 3차원 표면 재구성 기법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.23-28
    • /
    • 2014
  • For the reconstruction of three-dimensional (3D) shape of microscopic objects through shape from focus (SFF) methods, usually a single focus measure operator is employed. However, it is difficult to compute accurate depth map using a single focus measure due to different textures, light conditions and arbitrary object surfaces. Moreover, real images with diverse types of illuminations and contrasts lead to the erroneous depth map estimation through a single focus measure. In order to get better focus measurements and depth map, we have combined focus measure operators by using genetic algorithm. The resultant focus measure is obtained by weighted sum of the output of various focus measure operators. Optimal weights are obtained using genetic algorithm. Finally, depth map is obtained from the refined focus volume. The performance of the developed method is then evaluated by using both the synthetic and real world image sequences. The experimental results show that the proposed method is more effective in computing accurate depth maps as compared to the existing SFF methods.

A Model of Dynamic Transportation Planning of the Distribution System Using Genetic Algorithm (유전 알고리듬을 이용한 물류시스템의 동적 수송계획 모형)

  • Chang Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.102-113
    • /
    • 2004
  • This paper addresses the transportation planning that is based on genetic algorithm for determining transportation time and transportation amount of minimizing cost of distribution system. The vehicle routing of minimizing the transportation distance of vehicle is determined. A distribution system is consisted of a distribution center and many retailers. The model is assumed that the time horizon is discrete and finite, and the demand of retailers is dynamic and deterministic. Products are transported from distribution center to retailers according to transportation planning. Cost factors are the transportation cost and the inventory cost, which transportation cost is proportional to transportation distance of vehicle when products are transported from distribution center to retailers, and inventory cost is proportional to inventory amounts of retailers. Transportation time to retailers is represented as a genetic string. The encoding of the solutions into binary strings is presented, as well as the genetic operators used by the algorithm. A mathematical model is developed. Genetic algorithm procedure is suggested, and a illustrative example is shown to explain the procedure.

Fast and Scalable Path Re-routing Algorithm Using A Genetic Algorithm (유전자 알고리즘을 이용한 확장성 있고 빠른 경로 재탐색 알고리즘)

  • Lee, Jung-Kyu;Kim, Seon-Ho;Yang, Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.157-164
    • /
    • 2011
  • This paper presents a fast and scalable re-routing algorithm that adapts to dynamically changing networks. The proposed algorithm integrates Dijkstra's shortest path algorithm with the genetic algorithm. Dijkstra's algorithm is used to define the predecessor array that facilitates the initialization process of the genetic algorithm. After that, the genetic algorithm re-searches the optimal path through appropriate genetic operators under dynamic traffic situations. Experimental results demonstrate that the proposed algorithm produces routes with less traveling time and computational overhead than pure genetic algorithm-based approaches as well as the standard Dijkstra's algorithm for large-scale networks.

A Genetic Algorithm for Scheduling Sequence-Dependant Jobs on Parallel Identical Machines (병렬의 동일기계에서 처리되는 순서의존적인 작업들의 스케쥴링을 위한 유전알고리즘)

  • Lee, Moon-Kyu;Lee, Seung-Joo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.3
    • /
    • pp.360-368
    • /
    • 1999
  • We consider the problem of scheduling n jobs with sequence-dependent processing times on a set of parallel-identical machines. The processing time of each job consists of a pure processing time and a sequence-dependent setup time. The objective is to maximize the total remaining machine available time which can be used for other tasks. For the problem, a hybrid genetic algorithm is proposed. The algorithm combines a genetic algorithm for global search and a heuristic for local optimization to improve the speed of evolution convergence. The genetic operators are developed such that parallel machines can be handled in an efficient and effective way. For local optimization, the adjacent pairwise interchange method is used. The proposed hybrid genetic algorithm is compared with two heuristics, the nearest setup time method and the maximum penalty method. Computational results for a series of randomly generated problems demonstrate that the proposed algorithm outperforms the two heuristics.

  • PDF

A Genetic Algorithm for Backup Virtual Path Routing in Multicast ATM Networks (멀티캐스트 ATM 망에서 대체가상결로의 설정을 위한 유전 알고리듬)

  • 김여근;송원섭;곽재승
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.2
    • /
    • pp.101-114
    • /
    • 2000
  • Multicasting is the simultaneous transmission of data to multiple destinations. In multicast ATM networks the effect of failures on transmission links or nodes can be catastrophic so that the issue of survivability is of great importance. However little attention has been paid to the problem of multicast restoration. This paper presents an efficient heuristic technique for routing backup virtual paths in ulticast networks with link failure. Genetic algorithm is employed here as a heuristic. In the application of genetic algorithm to the problem, a new genetic encoding and decoding method and genetic operators are proposed in this paper. The other several heuristics are also presented in order to assess the performance of the proposed algorithm. Experimental results demonstrate that our algorithm is a promising approach to solving the problem.

  • PDF

Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections

  • Hayalioglu, M.S.;Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.453-469
    • /
    • 2004
  • In this article, a genetic algorithm based optimum design method is presented for non-linear steel frames with semi-rigid connections. The design algorithm obtains the minimum weight frame by selecting suitable sections from a standard set of steel sections such as European wide flange beams (i.e., HE sections). A genetic algorithm is employed as optimization method which utilizes reproduction, crossover and mutation operators. Displacement and stress constraints of Turkish Building Code for Steel Structures (TS 648, 1980) are imposed on the frame. The algorithm requires a large number of non-linear analyses of frames. The analyses cover both the non-linear behaviour of beam-to-column connection and $P-{\Delta}$ effects of beam-column members. The Frye and Morris polynomial model is used for modelling of semi-rigid connections. Two design examples with various type of connections are presented to demonstrate the application of the algorithm. The semi-rigid connection modelling results in more economical solutions than rigid connection modelling, but it increases frame drift.