• Title/Summary/Keyword: genetic algorithm operators

Search Result 172, Processing Time 0.027 seconds

Vehicle Routing Problem Using Parallel Genetic Algorithm (병렬 유전자 알고리즘을 이용한 차량경로문제에 관한 연구)

  • Yoo, Yoong-Seok;Ro, In-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.490-499
    • /
    • 1999
  • Vehicle routing problem(VRP) is known to be NP-hard problem, and good heuristic algorithm needs to be developed. To develop a heuristic algorithm for the VRP, this study suggests a parallel genetic algorithm(PGA), which determines each vehicle route in order to minimize the transportation costs. The PGA developed in this study uses two dimensional array chromosomes, which rows represent each vehicle route. The PGA uses new genetic operators. New mutation operator is composed of internal and external operators. internal mutation swaps customer locations within a vehicle routing, and external mutation swaps customer locations between vehicles. Ten problems were solved using this algorithm and showed good results in a relatively short time.

  • PDF

Performance Analysis of Distributed Genetic Algorithms for Traveling Salesman Problem (순회판매원문제를 위한 분산유전알고리즘 성능평가)

  • Kim, Young Nam;Lee, Min Jung;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.81-89
    • /
    • 2016
  • Distributed genetic algorithm (DGA), also known as island model or coarse-grained model, is a kind of parallel genetic algorithm, in which a population is partitioned into several sub-populations and each of them evolves with its own genetic operators to maintain diversity of individuals. It is known that DGA is superior to conventional genetic algorithm with a single population in terms of solution quality and computation time. Several researches have been conducted to evaluate effects of parameters on GAs, but there is no research work yet that deals with structure of DGA. In this study, we tried to evaluate performance of various genetic algorithms (GAs) for the famous symmetric traveling salesman problems. The considered GAs include a conventional serial GA (SGA) with IGX (Improved Greedy Crossover) and several DGAs with various combinations of crossover operators such as OX (Order Crossover), DPX (Distance Preserving Crossover), GX (Greedy Crossover), and IGX. Two distinct immigration policies, conventional noncompetitive policy and newly proposed competitive policy are also considered. To compare performance of GAs clearly, a series of analysis of variance (ANOVA) is conducted for several scenarios. The experimental results and ANOVAs show that DGAs outperform SGA in terms of computation time, while the solution quality is statistically the same. The most effective crossover operators are revealed as IGX and DPX, especially IGX is outstanding to improve solution quality regardless of type of GAs. In the perspective of immigration policy, the proposed competitive policy is slightly superior to the conventional policy when the problem size is large.

The effect of the new stopping criterion on the genetic algorithm performance

  • Kaya, Mustafa;Genc, Asim
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.63-71
    • /
    • 2021
  • In this study, a new stopping criterion, called "backward controlled stopping criterion" (BCSC), was proposed to be used in Genetic Algorithms. In the study, the available stopping citeria; adaptive stopping citerion, evolution time, fitness threshold, fitness convergence, population convergence, gene convergence, and developed stopping criterion were applied to the following four comparison problems; high strength concrete mix design, pre-stressed precast concrete beam, travelling salesman and reinforced concrete deep beam problems. When completed the analysis, the developed stopping criterion was found to be more accomplished than available criteria, and was able to research a much larger area in the space design supplying higher fitness values.

Evaluation of the different genetic algorithm parameters and operators for the finite element model updating problem

  • Erdogan, Yildirim Serhat;Bakir, Pelin Gundes
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.541-569
    • /
    • 2013
  • There is a wide variety of existing Genetic Algorithms (GA) operators and parameters in the literature. However, there is no unique technique that shows the best performance for different classes of optimization problems. Hence, the evaluation of these operators and parameters, which influence the effectiveness of the search process, must be carried out on a problem basis. This paper presents a comparison for the influence of GA operators and parameters on the performance of the damage identification problem using the finite element model updating method (FEMU). The damage is defined as reduction in bending rigidity of the finite elements of a reinforced concrete beam. A certain damage scenario is adopted and identified using different GA operators by minimizing the differences between experimental and analytical modal parameters. In this study, different selection, crossover and mutation operators are compared with each other based on the reliability, accuracy and efficiency criteria. The exploration and exploitation capabilities of different operators are evaluated. Also a comparison is carried out for the parallel and sequential GAs with different population sizes and the effect of the multiple use of some crossover operators is investigated. The results show that the roulettewheel selection technique together with real valued encoding gives the best results. It is also apparent that the Non-uniform Mutation as well as Parent Centric Normal Crossover can be confidently used in the damage identification problem. Nevertheless the parallel GAs increases both computation speed and the efficiency of the method.

A Handling Method of Linear Constraints for the Genetic Algorithm (유전알고리즘에서 선형제약식을 다루는 방법)

  • Sung, Ki-Seok
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.37 no.4
    • /
    • pp.67-72
    • /
    • 2012
  • In this paper a new method of handling linear constraints for the genetic algorithm is suggested. The method is designed to maintain the feasibility of offsprings during the evolution process of the genetic algorithm. In the genetic algorithm, the chromosomes are coded as the vectors in the real vector space constrained by the linear constraints. A method of handling the linear constraints already exists in which all the constraints of equalities are eliminated so that only the constraints of inequalities are considered in the process of the genetic algorithm. In this paper a new method is presented in which all the constraints of inequalities are eliminated so that only the constraints of equalities are considered. Several genetic operators such as arithmetic crossover, simplex crossover, simple crossover and random vector mutation are designed so that the resulting offspring vectors maintain the feasibility subject to the linear constraints in the framework of the new handling method.

A Fuzzy Clustering Method based on Genetic Algorithm

  • Jo, Jung-Bok;Do, Kyeong-Hoon;Linhu Zhao;Mitsuo Gen
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1025-1028
    • /
    • 2000
  • In this paper, we apply to a genetic algorithm for fuzzy clustering. We propose initialization procedure and genetic operators such as selection, crossover and mutation, which are suitable for solving the problems. To illustrate the effectiveness of the proposed algorithm, we solve the manufacturing cell formation problem and present computational comparisons to generalized Fuzzy c-Means algorithm.

  • PDF

Hybrid Genetic Operators of Hamming Distance and Fitness for Reducing Premature Convergence (조기수렴 저감을 위한 해밍거리와 적합도의 혼합 유전 연산자)

  • Lee, Hong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.170-177
    • /
    • 2014
  • Genetic Algorithms are robust search and optimization techniques but have some problems such as premature convergence and convergence to local extremum. As population diversity converges to low value, the search ability decreases and converges to local extremum but population diversity converges to high value, then the search ability increases and converges to global optimum or genetic algorithm may diverge. To guarantee that genetic algorithms converge to the global optima, the genetic operators should be chosen properly. In this paper, we propose the genetic operators with the hybrid function of the average Hamming distance and the fitness value to maintain the diversity of the GA's population for escaping from the premature convergence. Results of simulation studies verified the effects of the mutation operator for maintaining diversity and the other operators for improving convergence properties as well as the feasibility of using proposed genetic operators on convergence properties to avoid premature convergence and convergence to local extremum.

Design of Optimal Digital IIR Filters using the Genetic Algorithm

  • Jang, Jung-Doo;Kang, Seong G.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.115-121
    • /
    • 2002
  • This paper presents an evolutionary design of digital IIR filters using the genetic algorithm (GA) with modified genetic operators and real-valued encoding. Conventional digital IIR filter design methods involve algebraic transformations of the transfer function of an analog low-pass filter (LPF) that satisfies prescribed filter specifications. Other types of frequency-selective digital fillers as high-pass (HPF), band-pass (BPF), and band-stop (BSF) filters are obtained by appropriate transformations of a prototype low-pass filter. In the GA-based digital IIR filter design scheme, filter coefficients are represented as a set of real-valued genes in a chromosome. Each chromosome represents the structure and weights of an individual filter. GA directly finds the coefficients of the desired filter transfer function through genetic search fur given filter specifications of minimum filter order. Crossover and mutation operators are selected to ensure the stability of resulting IIR filters. Other types of filters can be found independently from the filter specifications, not from algebraic transformations.

A New Approach to Adaptive HFC-based GAs: Comparative Study on Crossover Genetic Operator (적응 HFC 기반 유전자알고리즘의 새로운 접근: 교배 유전자 연산자의 비교연구)

  • Kim, Gil-Sung;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1636-1641
    • /
    • 2008
  • In this study, we introduce a new approach to Parallel Genetic Algorithms (PGA) which combines AHFCGA with crossover operator. As to crossover operators, we use three types of the crossover operators such as modified simple crossover(MSX), arithmetic crossover(AX), and Unimodal Normal Distribution Crossover(UNDX) for real coding. The AHFC model is given as an extended and adaptive version of HFC for parameter optimization. The migration topology of AHFC is composed of sub-populations(demes), the admission threshold levels, and admission buffer for the deme of each threshold level through succesive evolution process. In particular, UNDX is mean-centric crossover operator using multiple parents, and generates offsprings obeying a normal distribution around the center of parents. By using test functions having multimodality and/or epistasis, which are commonly used in the study of function parameter optimization, Experimental results show that AHFCGA can produce more preferable output performance result when compared to HFCGA and RCGA.

A Hybrid Genetic Algorithm for Generating Cutting Paths of a Laser Torch (레이저 토치의 절단경로 생성을 위한 혼합형 유전알고리즘)

  • 이문규;권기범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1048-1055
    • /
    • 2002
  • The problem of generating torch paths for 2D laser cutting of a stock plate nested with a set of free-formed parts is investigated. The objective is to minimize the total length of the torch path starting from a blown depot, then visiting all the given Parts, and retuning back to the depot. A torch Path consists of the depot and Piercing Points each of which is to be specified for cutting a part. The torch path optimization problem is shown to be formulated as an extended version of the standard travelling salesman problem To solve the problem, a hybrid genetic algorithm is proposed. In order to improve the speed of evolution convergence, the algorithm employs a genetic algorithm for global search and a combination of an optimization technique and a genetic algorithm for local optimization. Traditional genetic operators developed for continuous optimization problems are used to effectively deal with the continuous nature of piercing point positions. Computational results are provided to illustrate the validity of the proposed algorithm.