• Title/Summary/Keyword: genetic algorithm operators

Search Result 172, Processing Time 0.026 seconds

Sexual Reproduction Genetic Algorithms: The Effects of Multi-Selection & Diploidy on Search Performances (유성생식 유전알고리즘 : 다중선택과 이배성이 탐색성능에 미치는 영향)

  • Ryu, K.B.;Choi, Y.J.;Kim, C.E.;Lee, H.S.;Jung, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.1006-1010
    • /
    • 1995
  • This paper describes Sexual Reproduction Genetic Algorithm(SRGA) for function optimization. In SRGA, each individual utilize a diploid chromosome structure. Sex cells(gametes) are produced through artificial meiosis in which crossover and mutation occur. The proposed method has two selection operators, one, individual selection which selects the individual to fertilize, and the other, gamete selection which makes zygote for offspring production. We consider the effects of multi-selection and diploidy on search performance. SRGA improves local and global search(exploitation and exploration) and show optimum tracking performance in nonstationary environments. Gray coding is incorporated to transforming the search space and Genic uniform distribution method is proposed to alleviate the problem of premature convergence.

  • PDF

Implementation of GA Processor with Multiple Operators, Based on Subpopulation Architecture (분할구조 기반의 다기능 연산 유전자 알고리즘 프로세서의 구현)

  • Cho Min-Sok;Chung Duck-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.295-304
    • /
    • 2003
  • In this paper, we proposed a hardware-oriented Genetic Algorithm Processor(GAP) based on subpopulation architecture for high-performance convergence and reducing computation time. The proposed architecture was applied to enhancing population diversity for correspondence to premature convergence. In addition, the crossover operator selection and linear ranking subpop selection were newly employed for efficient exploration. As stochastic search space selection through linear ranking and suitable genetic operator selection with respect to the convergence state of each subpopulation was used, the elapsed time of searching optimal solution was shortened. In the experiments, the computation speed was increased by over $10\%$ compared to survival-based GA and Modified-tournament GA. Especially, increased by over $20\%$ in the multi-modal function. The proposed Subpop GA processor was implemented on FPGA device APEX EP20K600EBC652-3 of AGENT 2000 design kit.

A Novel Algorithm for Optimal Location of FACTS Devices in Power System Planning

  • Kheirizad, Iraj;Mohammadi, Amir;Varahram, Mohammad Hadi
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • The particle swarm optimization(PSO) has been shown to converge rapidly during the initial stages of a global search, but around global optimum, the search process becomes very slow. On the other hand, the genetic algorithm is very sensitive to the initial population. In fact, the random nature of the GA operators makes the algorithm sensitive to initial population. This dependence to the initial population is in such a manner that the algorithm may not converge if the initial population is not well selected. In this paper, we have proposed a new algorithm which combines PSO and GA in such a way that the new algorithm is more effective and efficient and can find the optimal solution more accurately and with less computational time. Optimal location of SVC using this hybrid PSO-GA algorithm is found. We have also found the optimal place of SVC using GA and PSO separately and have compared the results. It has been shown that the new algorithm is more effective and efficient. An IEEE 68 bus test system is used for simulation.

Optimal design of floating substructures for spar-type wind turbine systems

  • Choi, Ejae;Han, Changwan;Kim, Hanjong;Park, Seonghun
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.253-265
    • /
    • 2014
  • The platform and floating structure of spar type offshore wind turbine systems should be designed in order for the 6-DOF motions to be minimized, considering diverse loading environments such as the ocean wave, wind, and current conditions. The objective of this study is to optimally design the platform and substructure of a 3MW spar type wind turbine system with the maximum postural stability in 6-DOF motions as well as the minimum material cost. Therefore, design variables of the platform and substructure were first determined and then optimized by a hydrodynamic analysis. For the hydrodynamic analysis, the body weight of the system was considered, and the ocean wave conditions were quantified to the wave forces using the Morison's equation. Moreover, the minimal number of computation analysis models was generated by the Design of Experiments (DOE), and the design variables of the platform and substructure were finally optimized by using a genetic algorithm with a neural network approximation.

Multi-Objective Optimization Technique Using Genetic Algorithm and Its Application to Design of Linear Induction Motor (유전알고리즘을 이용한 선형유도전동기의 다중목적 최적설계)

  • Ryu, K.B.;Choi, Y.J.;Kim, C.E.;Kim, S.W.;Park, Y.C.;Kim, J.H.;Im, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.165-167
    • /
    • 1994
  • This paper presents a new method for multiobjective optimization using Genetic Algorithm-Sexual Reproduction Model(SR model). In SR model, each individual consists of chromosome pairs. Sex cells(gametes) are produced through artificial meiosis in which crossover and mutation occur, The proposed method has two selection operators, one, individual selection which selects the individual to fertilize, and the other, gamete selection which makes zygote for offspring production, The two selection schemes are repectively conducted according to different fitness(or objective) function and consequently give a solution which is unbiased to any objectives. We apply the proposed method to optimization of the design parameters of Linear Induction Motor(LIM) and show its effectiveness.

  • PDF

Estimation of LOCA Break Size Using Cascaded Fuzzy Neural Networks

  • Choi, Geon Pil;Yoo, Kwae Hwan;Back, Ju Hyun;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.495-503
    • /
    • 2017
  • Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA), which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN) model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.

Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks

  • Park, Ji Hun;An, Ye Ji;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2547-2555
    • /
    • 2021
  • The frequency of reactor coolant leakage is expected to increase over the lifetime of a nuclear power plant owing to degradation mechanisms, such as flow-acceleration corrosion and stress corrosion cracking. When loss of coolant accidents (LOCAs) occur, several parameters change rapidly depending on the size and location of the cracks. In this study, leak flow during LOCAs is predicted using a deep fuzzy neural network (DFNN) model. The DFNN model is based on fuzzy neural network (FNN) modules and has a structure where the FNN modules are sequentially connected. Because the DFNN model is based on the FNN modules, the performance factors are the number of FNN modules and the parameters of the FNN module. These parameters are determined by a least-squares method combined with a genetic algorithm; the number of FNN modules is determined automatically by cross checking a fitness function using the verification dataset output to prevent an overfitting problem. To acquire the data of LOCAs, an optimized power reactor-1000 was simulated using a modular accident analysis program code. The predicted results of the DFNN model are found to be superior to those predicted in previous works. The leak flow prediction results obtained in this study will be useful to check the core integrity in nuclear power plant during LOCAs. This information is also expected to reduce the workload of the operators.

Nuclear reactor vessel water level prediction during severe accidents using deep neural networks

  • Koo, Young Do;An, Ye Ji;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.723-730
    • /
    • 2019
  • Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be accurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performed better than the cascaded fuzzy neural network model of the previous study. Consequently, the DNN model is considered to perform well enough to provide supporting information on the RV water level to operators.

A Design of Capacitated Hub-and-Spoke Networks with Direct Shipment: Evolutionary Algorithm based Approach (용량제한과 직접수송이 있는 Hub-and-Spoke 네트워크 설계: 진화알고리듬 기반의 접근법에 의해)

  • Lee, Hyun Soo;Shin, Kyoung Seok;Kim, Yeo Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.4
    • /
    • pp.303-315
    • /
    • 2005
  • In this paper we address a design problem for hub-and-spoke networks and then consider a capacitated hub locations problem with direct shipment (CHLPwD). We determine the location of hubs, the allocation of nodes to hubs, and direct shipment paths in the network, with the objective of minimizing the total cost in the network. In this paper, CHLPwD is formulated as 0-1 integer programming. We develop an evolutionary algorithm here to solve the large sized CHLPwD. To do this, we present the representation and the genetic operators suitable for the problem and propose a heuristic method for the allocation of nodes to hubs. To enhance the search capability, problem-specific information is used in our evolutionary algorithm. The proposed algorithm is compared with the heuristic method in terms of solution quality and computation time. The experimental results show that our algorithm can provide better solutions than the heuristic.

Nonlinear Elastic Optimal Design Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 탄성 최적설계)

  • Kim, Seung Eock;Ma, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • The optimal design method in cooperation with a nonlinear elastic analysis method was presented. The proposed nonlinear elastic method overcame the drawback of the conventional LRFD method this approximately accounts for the nonlinear effect caused by using the moment amplification factors of and. The genetic algorithm uses a procedure based on the Darwinian notions of the survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance among the sections of the database. They satisfy constraint functions and give the lightest weight to the structure. The objective function was set to the total weight of the steel structure. The constraint functions were load-carrying capacities, serviceability, and ductility requirement. Case studies for a two-dimensional frame, a three-dimensional frame, and a three-dimensional steel arch bridge were likewise presented.