• Title/Summary/Keyword: genetic algorithm operators

Search Result 172, Processing Time 0.024 seconds

An Efficient Evolutionary Algorithm for Optimal Arrangement of RFID Reader Antenna (RFID 리더기 안테나의 최적 배치를 위한 효율적인 진화 연산 알고리즘)

  • Soon, Nam-Soon;Yeo, Myung-Ho;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.40-50
    • /
    • 2009
  • Incorrect deployment of RFID readers occurs reader-to-reader interferences in many applications using RFID technologies. Reader-to-reader interference occurs when a reader transmits a signal that interferes with the operation of another reader, thus preventing the second reader from communicating with tags in its interrogation zone. Interference detected by one reader and caused by another reader is referred to as a reader collision. In RFID systems, the reader collision problem is considered to be the bottleneck for the system throughput and reading efficiency. In this paper, we propose a novel RFID reader anti-collision algorithm based on evolutionary algorithm(EA). First, we analyze characteristics of RFID antennas and build database. Also, we propose EA encoding algorithm, fitness algorithm and genetic operators to deploy antennas efficiently. To show superiority of our proposed algorithm, we simulated our proposed algorithm. In the result, our proposed algorithm obtains 95.45% coverage rate and 10.29% interference rate after about 100 generations.

Optimum Allocation of Reactive Power in Real-Time Operation under Deregulated Electricity Market

  • Rajabzadeh, Mahdi;Golkar, Masoud A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • Deregulation in power industry has made the reactive power ancillary service management a critical task to power system operators from both technical and economic perspectives. Reactive power management in power systems is a complex combinatorial optimization problem involving nonlinear functions with multiple local minima and nonlinear constraints. This paper proposes a practical market-based reactive power ancillary service management scheme to tackle the challenge. In this paper a new model for voltage security and reactive power management is presented. The proposed model minimizes reactive support cost as an economic aspect and insures the voltage security as a technical constraint. For modeling validation study, two optimization algorithm, a genetic algorithm (GA) and particle swarm optimization (PSO) method are used to solve the problem of optimum allocation of reactive power in power systems under open market environment and the results are compared. As a case study, the IEEE-30 bus power system is used. Results show that the algorithm is well competent for optimal allocation of reactive power under practical constraints and price based conditions.

A New Tree Representation for Evolutionary Algorithms (진화 알고리듬을 위한 새로운 트리 표현 방법)

  • Soak, Sang-Moon;Ahn, Byung-Ha
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.1
    • /
    • pp.10-19
    • /
    • 2005
  • The minimum spanning tree (MST) problem is one of the traditional optimization problems. Unlike the MST, the degree constrained minimum spanning tree (DCMST) of a graph cannot, in general, be found using a polynomial time algorithm. So, finding the DCMST of a graph is a well-known NP-hard problem of importance in communications network design, road network design and other network-related problems. So, it seems to be natural to use evolutionary algorithms for solving DCMST. Especially, when applying an evolutionary algorithm to spanning tree problems, a representation and search operators should be considered simultaneously. This paper introduces a new tree representation scheme and a genetic operator for solving combinatorial tree problem using evolutionary algorithms. We performed empirical comparisons with other tree representations on several test instances and could confirm that the proposed method is superior to other tree representations. Even it is superior to edge set representation which is known as the best algorithm.

A Genetic Algorithm for the Chinese Postman Problem on the Mixed Networks (유전자 알고리즘을 이용한 혼합 네트워크에서의 Chinese Postman Problem 해법)

  • Jun Byung Hyun;Kang Myung Ju;Han Chi Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.181-188
    • /
    • 2005
  • Chinese Postman Problem (CPP) is a problem that finds a shortest tour traversing all edges or arcs at least once in a given network. The Chinese Postman Problem on Mixed networks (MCPP) is a Practical generalization of the classical CPP and it has many real-world applications. The MCPP has been shown to be NP-complete. In this paper, we transform a mixed network into a symmetric network using virtual arcs that are shortest paths by Floyd's algorithm. With the transformed network, we propose a Genetic Algorithm (GA) that converges to a near optimal solution quickly by a multi-directional search technique. We study the chromosome structure used in the GA and it consists of a path string and an encoding string. An encoding method, a decoding method, and some genetic operators that are needed when the MCPP is solved using the Proposed GA are studied. . In addition, two scaling methods are used in proposed GA. We compare the performance of the GA with an existing Modified MDXED2 algorithm (Pearn et al. , 1995) In the simulation results, the proposed method is better than the existing methods in case the network has many edges, the Power Law scaling method is better than the Logarithmic scaling method.

  • PDF

Formulation and Evaluation of Railway Optimal Alignment Design Model (철도 최적 노선설계 모형의 해석과 적용)

  • Kim, Jeong Hyun;Shin, Youngho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1845-1850
    • /
    • 2014
  • Railway operators have given a lot of efforts to determine the railway route of the minimum cost. In order to determine the optimal alignment, the alignment should be allocated satisfying the design criteria on various geographical condition with the minimum earth works. The determination of the optimal railway alignment is a kind of combination optimization because that must consider various design elements. This study developed a numerical model to determine the optimal railway alignment with the minimum construction cost. The problem was analyzed by the genetic algorithm, and the concept of the optimal alignment was established with the results from the analyses. The methodology was applied to a fictitious rail construction section and the result was evaluated. This methodology is meaningful considering the fact that the cost for energy is greater than that of the construction.

Multi-objective Genetic Algorism Model for Determining an Optimal Capital Structure of Privately-Financed Infrastructure Projects (민간투자사업의 최적 자본구조 결정을 위한 다목적 유전자 알고리즘 모델에 관한 연구)

  • Yun, Sungmin;Han, Seung Heon;Kim, Du Yon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.107-117
    • /
    • 2008
  • Private financing is playing an increasing role in public infrastructure construction projects worldwide. However, private investors/operators are exposed to the financial risk of low profitability due to the inaccurate estimation of facility demand, operation income, maintenance costs, etc. From the operator's perspective, a sound and thorough financial feasibility study is required to establish the appropriate capital structure of a project. Operators tend to reduce the equity amount to minimize the level of risk exposure, while creditors persist to raise it, in an attempt to secure a sufficient level of financial involvement from the operators. Therefore, it is important for creditors and operators to reach an agreement for a balanced capital structure that synthetically considers both profitability and repayment capacity. This paper presents an optimal capital structure model for successful private infrastructure investment. This model finds the optimized point where the profitability is balanced with the repayment capacity, with the use of the concept of utility function and multi-objective GA (Generic Algorithm)-based optimization. A case study is presented to show the validity of the model and its verification. The research conclusions provide a proper capital structure for privately-financed infrastructure projects through a proposed multi-objective model.

An Immune Algorithm based Multiple Energy Carriers System (면역알고리즘 기반의 MECs (에너지 허브) 시스템)

  • Son, Byungrak;Kang, Yu-Kyung;Lee, Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.23-29
    • /
    • 2014
  • Recently, in power system studies, Multiple Energy Carriers (MECs) such as Energy Hub has been broadly utilized in power system planners and operators. Particularly, Energy Hub performs one of the most important role as the intermediate in implementing the MECs. However, it still needs to be put under examination in both modeling and operating concerns. For instance, a probabilistic optimization model is treated by a robust global optimization technique such as multi-agent genetic algorithm (MAGA) which can support the online economic dispatch of MECs. MAGA also reduces the inevitable uncertainty caused by the integration of selected input energy carriers. However, MAGA only considers current state of the integration of selected input energy carriers in conjunctive with the condition of smart grid environments for decision making in Energy Hub. Thus, in this paper, we propose an immune algorithm based Multiple Energy Carriers System which can adopt the learning process in order to make a self decision making in Energy Hub. In particular, the proposed immune algorithm considers the previous state, the current state, and the future state of the selected input energy carriers in order to predict the next decision making of Energy Hub based on the probabilistic optimization model. The below figure shows the proposed immune algorithm based Multiple Energy Carriers System. Finally, we will compare the online economic dispatch of MECs of two algorithms such as MAGA and immune algorithm based MECs by using Real Time Digital Simulator (RTDS).

A study on the genetic algorithms for the scheduling of parallel computation (병렬계산의 스케쥴링에 있어서 유전자알고리즘에 관한 연구)

  • 성기석;박지혁
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.166-169
    • /
    • 1997
  • For parallel processing, the compiler partitions a loaded program into a set of tasks and makes a schedule for the tasks that will minimize parallel processing time for the loaded program. Building an optimal schedule for a given set of partitioned tasks of a program has known to be NP-complete. In this paper we introduce a GA(Genetic Algorithm)-based scheduling method in which a chromosome consists of two parts of a string which decide the number and order of tasks on each processor. An additional computation is used for feasibility constraint in the chromosome. By granularity theory, a partitioned program is categorized into coarse-grain or fine-grain types. There exist good heuristic algorithms for coarse-grain type partitioning. We suggested another GA adaptive to the coarse-grain type partitioning. The infeasibility of chromosome is overcome by the encoding and operators. The number of processors are decided while the GA find the minimum parallel processing time.

  • PDF

Optimal Routing for Distribution System Planning using New Adaptive GA (새로운 적응 유전 알고리즘을 이용한 배전계통계획의 최적경로탐색)

  • Kim, Min-Soo;Kim, Byung-Seop;Lee, Tae-Hyung;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.137-141
    • /
    • 2000
  • This paper presents an application of a new Adaptive Genetic Algorithms(AGA) to solve the Optimal Routing problem(ORP) for distribution system planning. In general, since the ORP is modeled as a mixed integer problem with some various mathematical constraints, it is hard to solve the problem. In this paper, we proposed a new adaptive strategy in GA to overcome the premature convergence and improve the convergence efficiency. And for these purposes, we proposed a fitness function suited for the ORP. In the proposed AGA, we used specially designed adaptive probabilities for genetic operators to consider the characteristics of distribution systems that are operated under radial configuration. The proposed algorithm has been tested in sample networks and the results are presented.

  • PDF

An Optimum Selection of Dual Coding Subfield Pattern for Plasma Displays

  • Kwak, Dong-Chan;Kim, Choon-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.730-733
    • /
    • 2003
  • Dual coding technique is one of the popular techniques to reduce the dynamic false contours on PDP. Subfield pattern is a key factor affecting the performance of dual coding technique. In this paper, an optimum subfield selection method based on genetic algorithm is proposed. Two types of string structures are defined to account for all the possible configurations of the dual coding subfield patterns. Genetic operators are proposed for optimization of dual coding subfield pattern. Quantitative measures to describe degrees of dynamic false contours and checkerboard patterns are defined. Experimental results indicate that dual coding subfield pattern that is determined by proposed method reduces dynamic false contours and checkerboard patterns.

  • PDF