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Abstract

Chinese Postman Problem (CPP) is a problem that finds a shortest tour traversing all

edges or arcs at least once in a given network. The Chinese Postman Problem on Mixed
networks (MCPP) is a practical generalization of the classical CPP and it has many
real-world applications. The MCPP has been shown to be NP-complete. In this paper, we
transform a mixed network into a symmetric network using virtual arcs that are shortest
paths by Floyd’s algorithm. With the transformed network, we propose a Genetic Algorithm
(GA) that converges to a near optimal solution quickly by a multi-directional search
technique. We study the chromosome structure used in the GA and it consists of a path
string and an encoding string. An encoding method, a decoding method, and some genetic
operators that are needed when the MCPP is solved using the proposed GA are studied. In
addition, two scaling methods are used in proposed GA. We compare the performance of the GA
with an existing Modified MIXED2 algorithm (Pearn et al., 1995). In the simulation results, the
proposed method is better than the existing methods in case the network has many edges, the
Power Law scaling method is better than the Logarithmic scaling method.

» Keyword : Chinese Postman Problem, CPP, MCPP, Genetic Algorithm

CHINE  HEH
- ®H4Y 1 2005.01.14, AA2IEY ¢ 2005.03.06
A3t AR AR AEyY * AERAANG ARALLEN ]S T4 AL %E AAAGTY 24



182  BE AFEFEREe HLE(2005. 3)

.M &

The Chinese Postman Problem (CPP) is to find
a shortest path that starts at some node, visits
each edge of the network at least once, and
returns to the starting node in a given network
G=(V, A) whose arcs (i,
nonnegative weight, where V is a set of vertices
and A is a set of arcs. The CPP on a directed
network is reduced to a minimum cost flow problem

j) have an associated

and the CPP on an undirected network is reduced
to a nonbipartite weighted matching problem. These
problems are solved in polynomial time. But the
CPP on a mixed network (i.e., some arcs are directed
and the others are undirected) is NP-complete(l,
7).

Applications of the MCPP include: patrolling streets by
police, routing of newspaper or mail delivery vehicles,
routing of street sweepers, household refuse collection
vehicles, fuel oil or gas delivery to households, snow
plows, school buses, spraying roads with salt, and
inspection of electric power lines{9,10].

For existing methods, there are branch-and-bound
algorithm using Lagrangian relaxations via integer
programming and a method to convert the MCPP
into a flow with gains problem via linear programming
and cutting plane techniques. Because of the
problem’s complexity, both approaches are computationally
inefficient, hence problems of great size can’t be
solved rapidly. So heuristic methods have been
proposed to solve the MCPP approximately. In this
paper, we proposed a Genetic Algorithm (GA) that
converges near optimal solution quickly by multi-directional
search technique.

Il. Chinese Postman Problem on Mixed
Networks

2.1 Problem Definition

A mixed network is shown in the following
figure 1.

Suppose that a post office is located at node F,
there is a mailbox box at each arc’s or edge’s center,
and postman gathers mail from every mailbox.
Then the postman traverses every road (arcs or edges)
at least once starting from F and he returns to F.

10
7 7 7
8 12
O, "
Fig 1. A Mixed network Modeling Example
Like that, the MCPP is to find a shortest path
that starts at some node, visits each edge and arc
of the network at least once, and returns to the

starting node in a given mixed network G=(V, E,
A), where E is a set of edges.

2.2 Problem Formulation
We define the following notations:
V : Set of vertices
E : Set of edges (or Undirected Edges)
A : Set of arcs (or Directed Edges)
d(i, j) : Distance of edge (i, j) € E ()= 0)
c(i, j) : Distance of arc (i, } € A 0= 0
xij © Number of passes of edge (i, j) €E 0= 1)
vij * Number of passes of arc (i. j) € A 0= 1)
On the mixed network G=(V, E, A), Routing
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cost is given as the following formulation:

C= (1§5Ed(l,f)x Gt (ig.eAC(l,])y i

The MCPP is to find a path to minimize cost C.

2.3 Existing Methods

In 1976, the MCPP has been shown to be NP-complete
by Papadimitriou(1).

Christofide et al.(8) presented an integer programming
formulation of the problem, and developed an exact
algorithm to solve the MCPP optimally. The algorithm
is essentially based on a branch-and-bound algorithm
using Lagrangian relaxations. Minieka (4) presented
a transformation converting the MCPP into a flow
with gains problem, which allows the MCPP to be
solved optimally via linear programming and cutting
plane techniques. Because of the problem’s complexity,
as the size of the problem is growing, both approaches
are computationally inefficient. So heuristic methods
have been proposed to solve the MCPP approximately.
Frederickson(4] and Pearn et al.(10) converted the
MCPP into a symmetric ne

twork that was applied to a method solving the
problem in polynomial time presented by Edmond(6),
and then solved problem using a matching technique.
These methods have many processes to edges, so
take long time on the mixed network that has
more edges than arcs.

lil. A genetic algorithm for the MCPP

3.1 General Description of Genetic Algorithms

A chromosome is coded to represent the problem.
Initially, the chromosomes are generated randomly
as many as population size. Among them, the
chromosomes more fitted with the given environment

are propagated to the next generation as many as
possible. As the chromosomes are evolved, dominant
chromosomes are selected, decoded, and evaluated.
The general genetic algorithm is described as follows:

Procedure : Genetic Algorithm
begin
t=0
initialize P():
evaluate P(1);
while (not termination condition) do
t=t+1;
select P(t) from P(t-1):
recombine P(t);
evaluate P(t):
end
end

A variable t that represents the generation is
used for a termination condition. And P(t) represents
t-th population set.

3.2 Network Transformation

Existing methods(4, 10} use a minimum cost
flow technique to transform the mixed network into
a symmetric network. We transform the mixed
network into a symmetric network using virtual arc
with the lowest cost.

To make a symmetric network, we create a
virtual arc which is the opposite direction of one
directional arc. It has lowest cost which was solved
using Floyd’s algorithm in the mixed network. The
virtual arc is similar to the routing path between
two required edges in rural postman problem(11,12).

Figure 2 shows a simple mixed network example
and table 1 is cost matrix for this network.

@l 5 (e

Fig 2. Mixed network example for transformation
Table 1. Cost matrix table
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The example network requires arc (c, b) to be a
symmetric network. Therefore, we must make a virtual
arc (c, b). Table 2 is virtual arc table for this
example network.

Table 2. Virtual arc table

Netart Nend Phode_list Cost
c b a 10
3.3 Coding

A genetic algorithm for the MCPP requires a
chromosome structure that represents a solution. The
chromosome is composed of a path string (PS) and
an encoding string (ES).

A path in the problem should pass all edges or
arcs at least once on the given network. Hence, an
element of PS represents an edge or an arc on the
given mixed network and the order of the elements
in the string is the same as the visiting order of
the edges or arcs.

An encoding string is required to distinguish an
edge and an arc and to represent an edge’s direction
simultaneously. An edge element has 0 or 1 which
denotes forward direction and opposite direction
respectively. And an arc element has 2 in ES. An
edge’s direction is decided by cost matrix. Forward
direction is path that appears upper triangular
part of a distance matrix such as (Table 1) In
(figure 2) example, path that goes node a to ¢ is
forward direction for edge (a, ¢)

The sizes of a path string and an encoding
Al + |E].

(Figure 3) illustrates a chromosome composed of
PS and ES for (figure 2) example.

string are

Fig 3. Example Coding String

Initial population is composed of chromosomes
that have a pair of elements chromosome, randomly
positioned.

3.4 Decoding

To evaluate a coded chromosome, it must be
decoded. The decoding method is to translate a
value in a path string’s element into two nodes
and to arrange the order of path string’s nodes.

Fig 4 illustrates that the path string’s element is translated

into two nodes.
P, P, P; P,
Nu';le NZIE:NZZ NSI%MZ anéNuz

Fig 4. Decoding of a path string

Suppose that a path P is P1—P2—..—Pn—P1,
and each Pk, k=1,..,n may be an arc or edge. If
Pk is composed of two nodes (Nkl, Nk2) which
denotes an arc or edge (i, j), then start node Nkl
and end node Nk2 is defined as follows:

if £ES,=0,2

{Nk1=i’Nk2=j

Nkl=j’Nk2=i

By checking the value of ESk, we can decide the
order of nodes in the path.

Fig b illustrates decading for the figure 3 coding string.
PS A B C D

1
c‘a

ES 2 2 2
a—L b b —Lc

node b l a
Fig 5. Decoding for the figure 3 coding string
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3.5 Evaluation and Fitness

After decoding the structure of a chromosome,
we compute the cost of the chromosome using the
order of the nodes.

The MCPP is to find a shortest path that starts
at some node, visits each edge and arc of the
network at least once, and returns to the starting
node. So, we can define the evaluation function of
the i-th chromosome as follows:

n—1
C,= ;1{d(Nkl»Nk2)+d(Nk2’N(k+1)l)}

The evaluation function Ci is composed of cost of
the path Pk, cost between path Pk and Pk+1, and
cost of returning to the starting node.

For the figure 5 decoding example, evaluation
path is A—=B—C—D. In details, start/end node is
a. Evaluation path is A(a—b)—-B(b—a)—C(b—c)—
Dlc—a), that is A(a—~b)—B(b—a)—(a—b)—C(b—c)
—D(c—~a). Path (a, b) is additional to build a way
from node a to node b between arc B and arc C.

The fitness value indicates that how much a
chromosome has dominant characteristics. A chromosome
that has the largest fitness value is the nearest
optimal solution.

The fitness value and the solution are in inverse
proportion to each other, so the fitness function of
the i-th chromosome is defined as follows:

1

To generate next population, we use Roulette
Wheel method and select chromosomes from current
population according to the fitness function values.

36 Scaling

Difference between a dominant chromosome and

a recessive chromosome causes to determine the
characteristics of the next generation and affects
convergence speed toward a good solution.

If the difference is too big, it causes premature
convergence that chromosomes converge a local
minimum and can’t evolve. To the opposite case, it
causes a genetic drift phenomena that chromosomes
can't converge to a solution. To solve these
problems, a scaling method can be used.

We Law scaling method

used the Power

(fe=1/% and the Logarithmic scaling method
(f’k= log 10(fk)) where J% is a power of

J . In the Power Law scaling method, a is a
variable according to the problem. The difference
between the scaled dominant chromosome and the
scaled recessive chromosome increases or decreases
according to value of a. If a is closed to O, then
the difference is closed to 0. If a is greater than 1,
then the difference is bigger. In this paper, a is
greater than or equal to 2 and less than or equal
to 5.

3.7 Genetic Operations

Genetic operations play a part in propagating
dominant characteristics to the next population as
much as possible. A crossover operation and mutation
operations are used.

To solve the MCPP, we used Partially Matched
Crossover (PMX) that has been proposed by Goldberg
and Lingle(2). We used exchange, reverse, and
inverse operation as mutation operators. The inverse
operation changes edge’s encoding string value of a
chromosome’s element, that is 0 to 1, 1 to O.

IV. Computational Results

4.1 Simulation Environment
We compared an existing method with the proposed
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genetic algorithm. Also we compared a genetic
algorithm using the Power Law Scaling with a
genetic algorithm using the Logarithmic Scaling.
Table 3 shows the test problems.

Table 3. Test Problems

Problem Number of Nurmber of Number of
nodes ares edges
1 6 3 6
2 9 6 6
3 6 2 6
4 9 8 8
5 9 " 6
6 1" 10 16
7 31 21 18
8 16 4 19
9 17 4 21
10 18 3 25

We compared GAs with the Modified MIXED2
algorithm that is a heuristic search method and
has been proposed in 1995(6).

In the GAs, population size is 100, number of
generation is 1000, and crossover operation rate is
between 0.7 and 0.9, each mutation operation rate
is 0.0 or 0.3, and a is between 2.0 and 5.0.

4.2 Comparison with the Modified MIXED2

In table 4, the performance of Modified MIXED2
(MM2) and a proposed genetic algorithm using
Power Law Scaling(GA-PLS) are compared. The
result contains a minimum cost for each problem
and a minimum time to find the minimum cost.

Table 4. Comparison with the Modified MIXED2

Prob- MM2 GA-PLS

lem Cost Tirme(sec) Cost Time(sec)
1 45 0.571 45 .01
2 96 0.139 96 0.23
3 81 0.35 64 0.1
4 82 1.78 80 0.24
5 117 1.312 118 0.41
6 228 4.176 222 2.194
7 178 12.488 175 10.5
8 64 9.117 62 3.255
9 58 20.611 59 3.107
10 55 24.606 55 9.23

In the problems 8, 9, 10, a proposed genetic
algorithm is faster than the Modified MIXED2.
These problems have much more edges than arcs.
Note that the Modified MIXEDZ has heavy edge
processing (i.e. transformation of edges into arcs,
minimum cost flow, etc.). But a proposed genetic
algorithm is independent on the numbers of edges
or arcs.

In the real world, two-way roads are more
common than one-way roads. So a proposed genetic
algorithm is better than the existing method such
as the Modified MIXED2.

4.3 Comparison with GAs

In the genetic algorithms, obtained optimal solutions
are dependent on scaling functions of the fitness
value.

In table 3, the performance of the Power Law
scaling function and the Logarithmic scaling function
on the MCPP is described.

Table 3. Comparison with GAs

Power Law Scaling Logarithmic Scaling
Problem

Cost Time(sec) Cost Time(sec)
1 45 0.1 45 2.624
2 96 0.231 17 7.16
3 81 0.1 70 0.1
4 82 0.24 107 2.147
5 17 0.41 158 3.316
6 228 2.194 328 5.138
7 178 10.5 446 7.271
8 64 3.255 101 1.498
9 58 3.107 95 08
10 55 9.23 91 1.389

The Logarithmic scaling method is worse than
the Power Law scaling method. Because of the log

function’s characteristic in scaling function Si=logf)
the small difference between dominant and recessive

chromosomes causes the genetic drift phenomena.
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V. Conclusion

In this paper, we presented an efficient genetic
algorithm to solve the MCPP. We studied a simple
network transformation method using virtual arc,
and chromosome structure used in GA that consists
of a path string and an encoding string. An encoding
method and a decoding method are studied, and we
used some genetic operators such as PMX as
crossover operator, and exchange, reverse, and inverse
operation as mutation operators.

10 test problems which has 6-31 nodes, 2-21
arcs, 6-25 edges are generated for computational
experiments. We compare the performance of the
GA with an existing Modified MIXED2 algorithm
for the same problems. It has been observed that
the proposed GA is better than the Modified
MIXEDZ algorithm and, especially, the GA is robust
for the problems that have many edges. For the
scaling methods, we found that Power Law Scaling is
better than Logarithmic Scaling in the proposed GA.
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