• Title/Summary/Keyword: genetic algorithm operators

Search Result 172, Processing Time 0.03 seconds

Performance Comparison on Pattern Recognition Between DNA Coding Method and GA Coding Method (DNA 코딩방법과 GA 코딩방법의 패턴인식 성능 비교에 관한 연구)

  • 백동화;한승수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.383-386
    • /
    • 2002
  • In this paper, we investigated the pattern recognition performance of the numeric patterns (from 0 to 9) using DNA coding method. The pattern recognition performance of the DNA coding method is compared to the that of the GA(Genetic Algorithm). GA searches effectively an optimal solution via the artificial evolution of individual group of binary string using binary coding, while DNA coding method uses four-type bases denoted by A(Adenine), C(Cytosine), G(Guanine) and T(Thymine), The pattern recognition performance of GA and DNA coding method is evaluated by using the same genetic operators(crossover and mutation) and the crossover probability and mutation probability are set the same value to the both methods. The DNA coding method has better characteristics over genetic algorithms (GA). The reasons for this outstanding performance is multiple possible solution presentation in one string and variable solution string length.

A design for hub-and-spoke transportation networks using an evolutionary algorithm (진화알고리듬을 이용한 hub-anb-spoke 수송네트워크 설계)

  • Lee, Hyeon-Su;Sin, Gyeong-Seok;Kim, Yeo-Geun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.59-71
    • /
    • 2005
  • In this paper we address a design problem for hub and spoke transportation networks and then consider a capacitated hub locations problem with direct shipment (CHLPwD). We determine the location of hubs, the allocation of nodes to hubs, and direct shipment paths in the network, with the objective of minimizing the total cost in the network. An evolutionary algorithm is developed here to solve the CHLPwD. To do this, we propose the representation and the genetic operators suitable for the problem and adopt a heuristic method for the allocation of nodes to hubs. To enhance the search capability, problem-specific information is used in our evolutionary algorithm. The proposed algorithm is compared with the heuristic method in terms of solution quality and computation time. The experimental results show that our algorithm can provide better solutions than the heuristic.

  • PDF

Genetic Algorithm-based Generative Design for Creative Ring Design (독창적 반지 설계를 위한 유전자 알고리즘 기반의 변환생성 디자인)

  • Kim, Ko Uh;Kang, Sol Ji;Jee, Sang Hyeon;Lee, Seung Bok;Lee, Keon Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.233-238
    • /
    • 2014
  • Creativity is crucial in designing and producing attractive accessaries and daily supplies as well as art works. Generative design can be a paradigm to be used to obtain novel ideas or motifs for creative design works. This paper introduces a generative design method which comes up with unique ring models using genetic algorithm. It presents how the genetic algorithm works in terms of candidate solution coding, operators, and fitness evaluation function. The proposed method allows the customers to express their personal preference and later the preference to be reflected in fitness evaluation. In the final stage of the proposed method, several ring models are suggested for customers to choose on their own. The chosen ring models can be put into physical rings with the help of a 3D printer because the models are expressed in 3D geometric structures.

Concept Optimization for Mechanical Product Using Genetic Algorithm

  • Huang Hong Zhong;Bo Rui Feng;Fan Xiang Feng
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1072-1079
    • /
    • 2005
  • Conceptual design is the first step in the overall process of product design. Its intrinsic uncertainty, imprecision, and lack of information lead to the fact that current conceptual design activities in engineering have not been computerized and very few CAD systems are available to support conceptual design. In most of the current intelligent design systems, approach of principle synthesis, such as morphology matrix, bond graphic, or design catalogues, is usually adopted to deal with the concept generation, in which optional concepts are generally combined and enumerated through function analysis. However, as a large number of concepts are generated, it is difficult to evaluate and optimize these design candidates using regular algorithm. It is necessary to develop a new approach or a tool to solve the concept generation. Generally speaking, concept generation is a problem of concept synthesis. In substance, this process of developing design candidate is a combinatorial optimization process, viz., the process of concept generation can be regarded as a solution for a state-place composed of multi-concepts. In this paper, genetic algorithm is utilized as a feasible tool to solve the problem of combinatorial optimization in concept generation, in which the encoding method of morphology matrix based on function analysis is applied, and a sequence of optimal concepts are generated through the search and iterative process which is controlled by genetic operators, including selection, crossover, mutation, and reproduction in GA. Several crucial problems on GA are discussed in this paper, such as the calculation of fitness value and the criteria for heredity termination, which have a heavy effect on selection of better concepts. The feasibility and intellectualization of the proposed approach are demonstrated with an engineering case. In this work concept generation is implemented using GA, which can facilitate not only generating several better concepts, but also selecting the best concept. Thus optimal concepts can be conveniently developed and design efficiency can be greatly improved.

A Synchronized Job Assignment Model for Manual Assembly Lines Using Multi-Objective Simulation Integrated Hybrid Genetic Algorithm (MO-SHGA) (다목적 시뮬레이션 통합 하이브리드 유전자 알고리즘을 사용한 수동 조립라인의 동기 작업 모델)

  • Imran, Muhammad;Kang, Changwook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.211-220
    • /
    • 2017
  • The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.

A Study on Genetic Algorithm and Stereo Matching for Object Depth Recognition (물체의 위치 인식을 위한 유전 알고리즘과 스테레오 정합에 관한 연구)

  • Hong, Seok-Keun;Cho, Seok-Je
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.355-361
    • /
    • 2008
  • Stereo matching is one of the most active research areas in computer vision. In this paper, we propose a stereo matching scheme using genetic algorithm for object depth recognition. The proposed approach considers the matching environment as an optimization problem and finds the optimal solution by using an evolutionary strategy. Accordingly, genetic operators are adapted for the circumstances of stereo matching. An individual is a disparity set. Horizontal pixel line of image is considered as a chromosome. A cost function is composed of certain constraints which are commonly used in stereo matching. Since the cost function consists of intensity, similarity and disparity smoothness, the matching process is considered at the same time in each generation. The LoG(Laplacian of Gaussian) edge is extracted and used in the determination of the chromosome. We validate our approach with experimental results on stereo images.

An Evolutionary Algorithm for Goal Programming: Application to two-sided Assembly Line Balancing Problems (목표계획법을 위한 진화알고리즘: 양면조립라인 밸런싱 문제에 적용)

  • Song, Won-Seop;Kim, Yeo-Geun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.191-196
    • /
    • 2008
  • This paper presents an evolutionary algorithm for goal programming with preemptive priority. To do this, an evolutionary strategy is suggested which search for the solution satisfying the goals in the order of the priority. Two-sided assembly line balancing problems with multiple goals are used to validate the applicability of the algorithm. In the problems, three goals are considered in the following priority order: minimizing the number of mated-stations, achieving the goal level of workload smoothness, and maximizing the work relatedness. The proper evolutionary components such as encoding and decoding method, evaluation scheme, and genetic operators, which are specific to the problem being solved, are designed in order to improve the algorithm's performance. The computational result is reported.

  • PDF

A Survey of Genetic Programming and Its Applications

  • Ahvanooey, Milad Taleby;Li, Qianmu;Wu, Ming;Wang, Shuo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1765-1794
    • /
    • 2019
  • Genetic Programming (GP) is an intelligence technique whereby computer programs are encoded as a set of genes which are evolved utilizing a Genetic Algorithm (GA). In other words, the GP employs novel optimization techniques to modify computer programs; imitating the way humans develop programs by progressively re-writing them for solving problems automatically. Trial programs are frequently altered in the search for obtaining superior solutions due to the base is GA. These are evolutionary search techniques inspired by biological evolution such as mutation, reproduction, natural selection, recombination, and survival of the fittest. The power of GAs is being represented by an advancing range of applications; vector processing, quantum computing, VLSI circuit layout, and so on. But one of the most significant uses of GAs is the automatic generation of programs. Technically, the GP solves problems automatically without having to tell the computer specifically how to process it. To meet this requirement, the GP utilizes GAs to a "population" of trial programs, traditionally encoded in memory as tree-structures. Trial programs are estimated using a "fitness function" and the suited solutions picked for re-evaluation and modification such that this sequence is replicated until a "correct" program is generated. GP has represented its power by modifying a simple program for categorizing news stories, executing optical character recognition, medical signal filters, and for target identification, etc. This paper reviews existing literature regarding the GPs and their applications in different scientific fields and aims to provide an easy understanding of various types of GPs for beginners.

Heuristic Model for Vehicle Routing Problem with Time Constrained Based on Genetic Algorithm (유전자알고리즘에 의한 시간제한을 가지는 차량경로모델)

  • Lee, Sang-Cheol;Yu, Jeong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.221-227
    • /
    • 2008
  • A vehicle routing problem with time constraint is one of the important problems in distribution and transportation. The service of a customer must start and finish within a given time interval. Our method is based on an improved operators of genetic algorithm and the objective is to minimize the cost of servicing the set of customers without being tardy or exceeding the capacity or travel time of the vehicles. This research shows that a proposed method based on the improved genetic search can obtain good solutions to vehicle routing problems with time constrained compared with a high degree of efficiency other heuristics. For the computational purpose, we developed a GUI-type computer program according to the proposed method and the computational results show that the proposed method is very effective on a set of standard test problems, and can be potentially useful in solving the vehicle routing problems.

Unsupervised Segmentation of Objects using Genetic Algorithms (유전자 알고리즘 기반의 비지도 객체 분할 방법)

  • 김은이;박세현
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.9-21
    • /
    • 2004
  • The current paper proposes a genetic algorithm (GA)-based segmentation method that can automatically extract and track moving objects. The proposed method mainly consists of spatial and temporal segmentation; the spatial segmentation divides each frame into regions with accurate boundaries, and the temporal segmentation divides each frame into background and foreground areas. The spatial segmentation is performed using chromosomes that evolve distributed genetic algorithms (DGAs). However, unlike standard DGAs, the chromosomes are initiated from the segmentation result of the previous frame, then only unstable chromosomes corresponding to actual moving object parts are evolved by mating operators. For the temporal segmentation, adaptive thresholding is performed based on the intensity difference between two consecutive frames. The spatial and temporal segmentation results are then combined for object extraction, and tracking is performed using the natural correspondence established by the proposed spatial segmentation method. The main advantages of the proposed method are twofold: First, proposed video segmentation method does not require any a priori information second, the proposed GA-based segmentation method enhances the search efficiency and incorporates a tracking algorithm within its own architecture. These advantages were confirmed by experiments where the proposed method was success fully applied to well-known and natural video sequences.