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Abstract 
 

Genetic Programming (GP) is an intelligence technique whereby computer programs are 
encoded as a set of genes which are evolved utilizing a Genetic Algorithm (GA). In other 
words, the GP employs novel optimization techniques to modify computer programs; 
imitating the way humans develop programs by progressively re-writing them for solving 
problems automatically. Trial programs are frequently altered in the search for obtaining 
superior solutions due to the base is GA. These are evolutionary search techniques inspired 
by biological evolution such as mutation, reproduction, natural selection, recombination, and 
survival of the fittest. The power of GAs is being represented by an advancing range of 
applications; vector processing, quantum computing, VLSI circuit layout, and so on. But one 
of the most significant uses of GAs is the automatic generation of programs. Technically, the 
GP solves problems automatically without having to tell the computer specifically how to 
process it. To meet this requirement, the GP utilizes GAs to a “population” of trial programs, 
traditionally encoded in memory as tree-structures. Trial programs are estimated using a 
“fitness function” and the suited solutions picked for re-evaluation and modification such 
that this sequence is replicated until a “correct” program is generated. GP has represented its 
power by modifying a simple program for categorizing news stories, executing optical 
character recognition, medical signal filters, and for target identification, etc. This paper 
reviews existing literature regarding the GPs and their applications in different scientific 
fields and aims to provide an easy understanding of various types of GPs for beginners. 
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  1. Introduction  

Genetic programming is a type of Evolutionary Algorithms (EAs), a subset of machine 
learning, i.e., a search algorithm inspired by the Darwinian’s theory of biological evolution. 
For the first time, the GP was introduced by Mr. John Koza which enables computers to solve 
problems without being clearly programmed [1]. The GP functions based on John Holland's 
GAs to generate programs for solving various complex optimization and search problems 
automatically. In the 1970s, Holland designed the GA as a way of exploiting the potential of 
the natural evolution to employ on computers. Natural evolution has observed the growth of 
complex organisms such as animals and plants from simpler single-celled life forms. Holland's 
GAs are models of the vitals of natural evolution and inheritance [2-3].  During the past forty 
years, the GPs have been applied to solve a wide range of complex optimization problems, 
patentable new inventions, producing a number of human-competitive results, etc. in the 
emerging scientific fields. Like many other fields of computer science, GP still is developing 
briskly, with new ideas and applications being continuously advanced [4]. While it 
demonstrates how remarkably abundant GP is and, moreover, makes it hard for new 
researchers to get familiarized with the main ideas of the GP. Even for students who slightly 
anxious in this field for a while, it is challenging to keep up by the pace of new advancements. 

During the last four decades, many books and survey papers have been written and 
published on various aspects of GP [1-30]. Some provided a profound introduction to the GPs 
and GPAs as a whole, and others presented a detailed introduction to them by focusing on 
specific application domains. Hence, there has been written no comprehensive survey on GP 
during the last decade, and most of the newcomers aim to learn about various types of GP and 
its applications due to having a variety of applications in different scientific fields such as 
computer science, biomedical, chemistry, etc. It caused to draw towards writing an easy 
overview to help their understanding about the GPs. This survey aims to fill the gap, by 
providing an easy understanding of various types of GP for both newcomers and researchers. 
The main contributions of this survey are briefly expressed as follows. 
• We overview some existing literature on the GPs such as definitions, workflow, and 
operations, etc. 
• We investigate various types of GPs and their applications. 
• We suggest some guidelines and directions to provide an easy understanding of GPs for 
newcomers. 

The rest of this paper is organized as follows. Section (2) affords an overview of the 
existing literature concerning GPs. Section (3) describes various types of GP with some 
highlight capabilities and limitations and introduces some applications of various types of GP 
among related source codes for each kind of GP separately.  Section (4) suggests some 
guidelines and research directions. Finally, section (4) draws some conclusions. 

 

2. Literature Review 
2.1. Definition of GAs and GPs 

This section provides a basic introduction to GAs and GPs. It summarizes some terms and 
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explains how a simple GA works, but it is not a complete tutorial, i.e., for more detail 
background information, we suggest readers look the books in [4], [20]. The base of GAs is 
some characteristics which are inspired by plants and animals. The growth of species (e.g., 
plants from seeds, animals from eggs, etc.), is controlled by the genes which are inherited from 
their parents. The genes are stashed on one or more threads of DNA. The DNA is a copy of the 
parent's DNA in case of asexual reproduction, likely with some random mutations. In the same 
trends, DNA from two parents is inherited through the new child in sexual reproduction. Often 
about half of each parent's DNA may transfer to a child where it combines with DNA copied 
from another parent. The child's DNA is mainly changed from that in either parent. 

Holland [2] introduced GAs in the early 1970s as computer programs that imitate the 
process of evolutionary development in nature. GAs evolve a population of possible solutions 
to solve complex optimization and search problems. Particularly, the GAs work on encoded 
models (symbols) of the solutions (i.e., similar to the genetic material of individuals in nature), 
and they do not operate exactly on the solutions themselves. Moreover, Holland’s GA works 
based on the encoding of solutions as binary strings from a binary alphabet as in nature; the 
selection makes the essential driving mechanism to achieve better solutions to remain. Every 
solution is assigned with a fitness value which indicates how to fit it is at solving the problem 
by comparing with other solutions in the population, i.e., the superior fitness value of a gene, 
the superior changes of survival, reproduction, and the larger its symbol in the succeeding 
generation. The process of recombination for genetic material in GAs is formulated by a 
crossover procedure which swaps parts between binary strings. Another operation, named 
mutation, produces a sporadic and random change through the bits of binary strings. The 
mutation also has a straight analogy from nature that can play the role of reproducing lost 
genetic material [3-10]. 

As depicted in Fig. 1, we designed a workflow to illustrate the primary steps of developing a 
GA. In the first step, GA begins from problem analysis to estimate the solution domain and 
determines fitness function to assess the solution domain. In the second step, a specific binary 
string (or real code) is assigned to denote each solution. In the third step, an initial population 
is randomly produced. Afterward, genetic operators consisting of “selection,” “crossover,” 
and “mutation” are presented for reproducing new solutions. Finally, by repetitive application 
of genetic operators and fitness evaluations, an optimal solution will be achieved till GA faces 
the termination and solution criteria [10-30]. 
The main five key steps (operations) of GAs are summarized as the following points. 
• Initialization (Problem Analysis): this strategy involves population parameter setting up, 

consisting of the greatest evolutional generation, value size, a probability of crossover 
and mutation rate. Nevertheless, the setting desirable values for these parameters are 
challenging in designing a practical GA, and there is no specific standard [1], [4], [20], 
[25], [31]. 

• Fitness: this is a numeric value allocated to every member of a population to afford a 
measure of the proportion of a solution to the problem. The fitness measure may combine 
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any countable, observable, measurable characteristic, behavior or combination of 
behaviors or features. The fitness measure is indicated in terms of “what requires to be 
performed” not “how to process it” [11]. A fitness function is a procedure which denotes 
the fitness of a gene as a solution to the problem in which the aim is to discover a gene 
with a minimum (or maximum) fitness [1]. 

• Selection: this operator is a mechanism for picking genes from the current population to 
reproduce a new generation. There have been proposed a lot of selection methods so far 
(e.g., stochastic, linear, roulette wheel, tournament, truncation, and so on) [1], [4], [20], 
[32]. 

• Crossover: it is a combination operator which produces a child by recombining selected 
parts from its parent during the evolutionary process [1], [4], [20-25]. 

• Mutation:  it randomly manipulates a small part of the genetic material (genotype) of one 
selected parent [1], [4], [22-25].  

• Termination: it is a significant part of GP which evaluates Pareto scoring criteria (e.g., 
functionality and efficiency) for achieving a proper argument in time to discontinue the 
search. There exist three different termination strategies including termination after a 
fixed generation, termination until the solution reaches the pre-set optimal requirement, 
or termination after the Pareto-optimal solution with no better results can be generated [1], 
[12], [22]. 

•  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. A workflow of GAs, the primary process is the dashed box; other optional items are methods for each 
function operator. 

 
Those five key steps mentioned above considerably affect the efficiency of GAs. For 

instance, a higher crossover probability may cause premature convergence, and theretofore a 
higher mutation rate may terminate in the loss of proper solutions. Fig. 2 shows a standard 
flowchart of the key steps of GAs. 
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Fig. 2. the standard flowchart of GP [25], [26] 

 
To design a GP, we require to define specific components to mimic the evolutionary process. 

These components include decision rules (or variables), arithmetic operations (or functions), 
and genetic operators such as crossover and mutation, to figurative expressions.  

The figurative expressions referred to as solutions (or genes) which are produced for 
shaping the initial population. A population in the GA is a set of possible solutions during an 
iteration process of the algorithm. In general, the initial expressions are generated by tree 
structure based encoding. Fig. 3 depicts a few instances of such trees. These expressions are 
shaped by components from two different parameter groups: (II) arithmetic operations or 
functional primitives (e.g., cos, +, *, sin, ln, etc.), and (III) system decision-variables (terminal 
set), e.g., r, π, b, etc. The arguments for operations are entered from the terminal set that 
includes the constants, decision parameters or other variables as listed in Table 1. The initial 
solutions are typically bounded based on the length of expression or tree depth for assigning 
the first population in the GA by the possible building blocks to be expanded at new steps of 
the evolutionary process [33-40]. For example: let us suppose that, we want to design a GP to 
calculate 𝑦 = 𝜋𝑟2. To solve this problem, the population of programs might be included a 
program that computes 𝑦 = (𝜋 ∗ (𝑟 ∗ 𝑟)). Therefore, fitness could be obtained by performing 
each program with each of ‘x’ values and checking each answer with the corresponding ‘y’ 
value. As depicted in Fig. 3, the bold circles indicate crossover points on the parents. It forms 
each child by swapping such nodes from the parents. When a picked child (shown bold) is 
shifted from the Dad program and added in the Mum (shifting the existing child or offspring, 
also is highlighted), a new child is generated that may possess even high fitness. In the result, 
(Child1) actually calculates 𝑦 = 𝜋 ∗ 𝑟2 and, therefore, it is the output of our GP. 
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Fig. 3. Tree-based expression of the stated GP and an instance of crossover operation: Child1: 𝜋 ∗ 𝑟2, 

Child2: 𝑏 ∗ 𝑠𝑖𝑛, Mum: 𝜋 ∗ 𝑠𝑖𝑛, Dad: b*𝑟2 [16, 34] 
 
The created solutions are finally arithmetic equations that implicitly give the correlation 
between the decision rules of the system and a related efficiency metric. Thus, each new child 
(or generated solution) sub-tree is assigned by a fitness value, that refers to how exact the 
expression describes the training data. The fitness of a child verifies the expression’s 
dependent ability to survive and produce the next generation during the evolutionary process. 
As shown in Fig. 3, to reproduce the subsequent population of new solutions, the child 
solution could further undergo small alterations using mutation to enable local search. This 
process can repeat at each generation till a new population is shaped. Evolution is concluded 
while a stopping criterion, such as a pre-set superiority or computational cost, is satisfied [16], 
[34].  
 

Table 1. Preliminary Parameters of the GP [16] 
Parameters  Values 

Pop size 1000 
Minimum initial tree size 2 
Maximum initial tree size 4 
Maximum solution length 30 

Evaluation limit 106 
Initialization method Ramped half and half 

Selection strategy Tournament with size 2 
Arithmetic operations {*, +, -, 𝑥2, sin, cos, ln, etc.} 
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Algorithm 1 explains the stages of a GP in details according to the predefined parameters in 
Table1. Herein, the “gene” is a term that means individual or chromosome in some existing 
literature. 

 
Algorithm1: Pseudo-framework of the standard GPs [34], [48] 
1.  Procedure Genetic_ Algorithm 
2.   Input: Setup GP according to the mentioned parametters in Table.1, retrieve training data; 
3.   begin    
4.   N = population size; 
5.   P = create parent population by randomly creating N genes; 
6.       While (not done) 
7.           C = create empty child population; 
8.            While (not enough genes in C) 
9.              Parent1 = select parent; 
10.            Parent2 = select parent; 
11.            Child1, Child2 = Crossover (Parent1, Parent2) 
12.            Mutate child1, child2; 
13.            Evaluate child1, child2 for fitness; 
14.            Insert child1, child2 into C; 
15.         End while 
16.         P = combine P and C somehow to get N new genes 
17.     End while 
18.    Return Optimal/best solution so far; 
18. End Procedure 

 
Many platforms offer specific features in order to implement the GAs. The most popular 

platforms for performing GAs are the MATLAB, Java, C++, and Python. For example, 
“Algorithmic Trading program” is an example of GP which is written in python and its source 
code can be found in [49]. 

 

2.2. Selection Strategies 
The first two preliminary steps represent the primitive set for GP, and hence, contingently 

determine the search space GP will seek. This consists of all the programs which could be 
created by making the primitives in all feasible ways. Nevertheless, the GP does not recognize 
which regions or elements of this search space are sufficient at this stage (that is, consist of 
programs which solve or almost solve the problem).  Indeed, it is the duty of the fitness 
measure, that adequately defines the desired purpose of the search process. The fitness 
measure is only the primary mechanism for providing a high-level statement of the problem’s 
requirements to the GP system. Depending on the optimization problem at hand, fitness could 
be estimated in terms of the quantity of error among its result and the appropriate output. Also, 
the amount of time (e.g., money, fuel, and the like) is needed to lead a system to the proper 
target state, the accuracy of the program in identifying patterns or grouping objects into classes, 
the final result which a game-playing program builds, the compliance of a structure with 
user-specified design criteria, and so on [20], [21], [22]. Individuals for creating child or 
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offspring are selected using a selection strategy after evaluating the fitness value of each gene 
during the selection process [7]. In other words, the selection strategy determines which one of 
the genes in the current generation can be applied for reproducing a new child in hopes that the 
next generation may possess greater fitness. The selection operator is accurately expressed to 
ensure which fit members of the population (with higher fitness) have a higher probability of 
being chosen for mutating, but those critical members of the population still have a low 
possibility of being chosen. Moreover, it essential to guarantee that the search process is 
universal and does not directly converge to the nearest local optimum genes. Various types of 
selection mechanisms have different procedures for evaluating the selection probability. The 
selection approaches evolve genes (solutions) based on the decision rules and, therefore, 
reproduce new solution (with higher fitness) by passing through the genetic material for 
generating the next generation in the form of the children. There have been introduced many 
types of selection strategies so far. Also, we describe four major selection methods including; 
proportionate reproduction (roulette wheel), tournament, rank based, and truncation, etc. More 
descriptions of selection strategies can be found in [41-46]. 

 

2.2.1 Proportionate Reproduction or Roulette Wheel 
Proportionate reproduction was proposed by Holland [2], supposed that the genes are 

chosen according to their probabilities which are equal to their fitness values. This process is 
an electing principle which is similar to the roulette wheel. In the roulette wheel, the 
possibility of choosing a sector is equal to the magnitude of the central angle of the sector. 
Similarly, in the GA, the total population is divided on the wheel, and each part indicates a 
child. The proportion of the child’s fitness to the whole fitness values of the total population 
determines the selection probability of that gen in the next generation. Therefore, it selects the 
area engaged over the gene on the wheel [31], [47]. The proportional roulette wheel strategy is 
illustrated in Fig. 4.  

 
 

Fig. 4. Roulette wheel selection strategy [31], [47] 
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Following points are the key steps of the Roulette Wheel selection strategy. 

I. Calculating the total of the fitness values for all genes in the population. 
II. Computing the fitness value of each gene and the proportion of each gene’s fitness value 

to the result fitness values of all genes in the whole population. The proportion denotes 
the probability of the gene to be chosen. 

III. Partitioning the roulette wheel into segments based on the proportions obtained in the 
second step. Every segment represents a gene. The area of the segment is proportional to 
the gene’s probability to be chosen. 

IV. Spinning the wheel ‘n’ times, i.e., ‘n’ is the number of genes in the population. Therefore, 
when the spinning of Roulette-wheel stops, the segment on which the pointer indicates 
the corresponding gene being chosen. 

Let’s suppose that a population with size 𝑛, 
1 2 3, , ,..., na a a aP   

 
  

= , each 𝑎𝑖 has the fitness value 

of 𝑓(𝑎𝑖), thus the probability of 𝑎𝑖 being chosen can be calculated as follows. 

 (1) 

 

 
Algorithm.2: Procedure for roulette wheel strategy [31] 
1. Procedure Roulette_wheel_selection 
2. While (Population size <Pop size do) 
3.  Generate Pop size random number (r) 
4.    Calculate Cumulative fitness, total fitness (𝑃𝑖) and obtain sum of proportional fitness (sum) 
5.      Spin the wheel pop size times 
6.      If sum < r then  
7.      Select the first gene (child), else select jth gene 
8.       End if 
9.    End while 
10.  Return genes with fitness value proportional to the size of selected wheel segment 
11. End Procedure 

 

The main advantage of roulette wheel strategy is that this method never knocks off the genes 
in the population and provides an opportunity for all of the genes to be chosen. However, the 
proportionate selection has a few disadvantages. For instance, if an initial population includes 
one or more very appropriate but not the best ones and the remaining of the population are not 
fit, then the proper genes will be occupied the whole population and avoid the rest part of the 
population from exploring other suitable genes.  Practically, it is very hard to use of roulette 
wheel selection on the problems of minimization whereby the fitness function for 
minimization must be transformed to maximization function as in the case of the Traveling 
Salesman Problem (TSP). The outline of the Roulette Wheel strategy is given by Algorithm 2. 
An example of a roulette wheel selection is written in MATLAB, which can be found in ref 
[50]. In general, proportionate reproduction refers to a group of selection strategies which 
select genes for reproduction according to their fitness values f. In these strategies, the 𝑃 (𝑎𝑖) of 
a gene from the ith class in the generation is calculated by Eq.1. Various strategies have been 
introduced for sampling this probability distribution, consisting; roulette wheel selection [63], 
stochastic remainder selection [64], [65], and stochastic universal selection [66], [67]. 

 
 

( )
( ) , , 1, 2,...,

( )
1

f aiP a i j nni f a jj

= =
∑
=
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2.2.2. Tournament Selection 
Tournament selection is one of the most significant selection methods in the GAs due to 

having high effectivness and it is easy to implement by the existing platforms [41], [45]. In this 
strategy, (𝑛) existing genes (parents) are chosen randomly from the larger population, and the 
picked genes compete with each other (dependent on the tournament size, commonly 2). The 
gene by the highest fitness is assigned as one of the next generation population. This strategy 
can control the selection pressure easily by altering the tournament size so that if the 
tournament size is larger than weak genes, then they have a smaller chance to be chosen. It also 
provides an opportunity for all genes to be chosen and it retains diversity, although preserving 
diversity may reduce the convergence speed. Fig. 5 depicts the strategy of tournament 
selection, and, moreover, the outline of tournament selection is given by Algorithm 3. In 
practice, the tournament selection has low complexity and can work on parallel architectures 
[31], [43], [45].  

 
Fig. 5. The process of tournament selection strategy 

 
In some cases, the reverse tournament selection is utilized in steady state GP where the gene 

by the worst fitness is picked to be exchanged by a newly generated gene (child). The 
tournament selection method provides a tradeoff to be considered among exploration and 
exploitation of the gene pool [1]. Let’s assume that, k is equal to (10*N) in Algorithm 1. 

Algorithm.3: Tournament selection [48], [49] 
1. Function Tournament_Selection(Pop, k) 
2. Best = null; 
3.      For( i= 1; i <k; i++) 
4.         Ind= pop [random (1,N)]; 
5.       if (Best=null) or (fitness=Ind) then 
6.           Best=Ind; 
7.             End if 
7.          End for 
14.   Return Best; 
11. End function 

 

An example of tournament selection is written in MATLAB, which can be found in ref [51]. 
 

2.2.3. Ranked Based Selection 
The Ranking selection was presented by Baker to resolve the disadvantages of proportionate 

reproduction [44]. In this strategy, the genes are first ordered based on their fitness values and, 
afterward, the ranks are allocated to them. Best gene achieves rank ‘N,’ and the worst one 
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achieves rank ‘1’. Therefore, the selection probability is allocated linearly to the genes 
according to their ranks. 
 (2) 

 

The Eq.2. states that 𝑃𝑖 is the probability of selection of the ith gene, and,  𝑛
+

𝑁
 is the selection 

probability of the best gene and, moreover,  𝑛
−

𝑁
 is the selection of probability of the worst gene. 

Each gene achieves a dissimilar rank even if their probabilities are equal. The Ranking process 
consists of two steps. In the first step, it orders the population according to the fitness values 
and in the second step, it allocates the ranks according to the corresponding fitness values to 
proportionate Selection. Rank based selection utilizes a function to map the indexes of genes 
in the sorted list to their selection probabilities. However, the mapping procedure could be 
non-linear (non-linear ranking) or linear (linear ranking), the goal of rank based selection has 
remained unchanged. The efficiency of the selection strategy depends on the mapping function. 
Practically, the mapping function includes a sort algorithm which takes O( 𝑛 𝑙𝑜𝑔 𝑛 ) 
computational cost. Thus, the computational complexity of the Ranking selection is O(𝑛 𝑙𝑜𝑔 𝑛) 
+ complexity of the selection (e.g., amounting between O(𝑛) and O(𝑛2)) [31],[44]-[45]. The 
outline of the Ranked based strategy is given by Algorithm. 4. 

 

Algorithm.4: Procedure for ranked based selection [31] 
1. Procedure Ranked_Based_selection 
2. While (Population size <Pop size do) 
3.       Sort population according to rank 
4.        Assign fitnesses to genes according to linear rank function 
5.        Generate Pop size random number (r) 
6.        Calculate Cumulative fitness, total fitness (𝑃𝑖) and obtain sum of proportional fitness (sum) 
7.        Spin the wheel pop size times 
8.      If sum < r then  
9.      Select the first gene (child), else select jth gene 
10.       End if 
11.   End while 
12.      Return genes with fitness values proportional to the size of selected wheel segment 
11. End Procedure 

 

An example of ranked based selection is written in MATLAB, which can be found in ref [52].  

 

2.2.4. Truncation Selection 
For the first time, Muhlenbein has introduced the Truncation method to the domain of GAs 
[55]. Truncation is a selection strategy for choosing potential solutions by recombining of 
genes after the reproduction method. In this selection, the candidate genes are sorted by the 
fitness values, and some proportion, 𝑡, (𝑒.𝑔. 𝑡 =  1

2
, 1
3

, 𝑒𝑡𝑐. ), of the fittest genes are chosen and 
reproduced 1

𝑡
 times. The main advantage of the Truncation is that it is less sophisticated than 

other selection methods, and is not used frequently in practice. Moreover, due to the sorting 
process of the population, the Truncation strategy has a time complexity of 𝑂(𝑛𝑙𝑜𝑔𝑛) [31], 
[53-55]. 

{ }1 ( ); 1,...,i NP n n n i N− + −= + − ∈
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2.2.5. Exponential Selection 
This method is also a type of rank based strategy (different from linear ranking selection) in a 
way that the probabilities in this strategy are exponentially calculated. The base of the 

exponent is C, where 0 1C< < . 

 (3) 
 

Here, the
1

N
N j

j

C −

=
∑  normalizes probabilities to guarantee that

1

1
N

i
iP

=

=∑ . 

The outline of both algorithms the linear ranking and the exponential ranking is similar 
together, but the difference is in the calculation of probabilities. Also, it also allocates rank ‘N’ 
to the best gene, and rank ‘1’ to the worst one [45], [46], [61]. Therefore, the total time 
complexity of GAs on exponentially scaled problems is “quadratic” or O(𝑛2) [62]. The rate of 
selection adjusts the population precentage which permits to reproduce in each generation. For 
proportionate, rank based, tournament, and truncation selection, it is often ‘1’ so that all genes 
possess a chance of reproducing no matter whether it is small, but smaller values are also 
feasible so that only the top X% are qualified to reproduce. If the selection is elitist, then some 
percentage of the fittest genes will be ensured inclusion in the next generation. The literature 
consist of many (parent) selection strategies not completely categorized in the above, but 
almost most of the selection strategies inspired from those five majors to select the fittest 
genes in the existing GAs. 

2.3. Crossover Operators 
Crossover or recombination of genes is one of the key genetic operators which merges 

program structures during the evolutionary process called building blocks (BBs), and it has 
changed the rule in practically all the GP’s associated researches after including as the primary 
operator in the GAs [56]. Commonly, after two genes are picked from the population, the basic 
crossover or standard one randomly chooses a node in each child tree excluding the root of the 
tree. Afterward, it swaps the two subtrees rooted with the picked nodes (named crossover 
points) concerning the two parent trees to reproduce two new genes (children). The 
recombination of genes which randomly selects the crossover points and ignores the semantics 
of the parents, moreover, it can frequently disorder valuable building blocks of tree structures. 
To solve this problem, much research has been introduced for improving the standard 
crossover operators [46], [56-60]. The rest of this section describes four popular crossover 
operations in the GAs. 

2.3.1 Single or One-Point Crossover 
One-point crossover is one of the simplest and elementary crossover operators which often 

used in the GAs. This method includes selecting a gene randomly to cut the parent 
genes through two new generation. For example, the parent1 (𝑝1) and parent2 (𝑝2) of length 
(𝑙 ), and, in addition, a random number between  (𝑙) and (𝑙 − 1) is chosen. Each parent is shifted 
into 𝑝1𝑙𝑒𝑓𝑡  , 𝑝1𝑟𝑖𝑔ℎ𝑡   , 𝑝2𝑙𝑒𝑓𝑡   and 𝑝2𝑟𝑖𝑔ℎ𝑡 . The children are joined into 𝑝1𝑙𝑒𝑓𝑡  |𝑝2𝑟𝑖𝑔ℎ𝑡 , and 
𝑝2𝑙𝑒𝑓𝑡|𝑝1𝑟𝑖𝑔ℎ𝑡, as depicted in Fig. 6 [68-70]. 
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Fig. 6. an example of the one-point crossover 

 

2.3.2. N-Point Crossover 
This operator includes dividing the parents into N segments and then joins their points to 

reproduce a new child. These points are chosen similar to that of one-point crossover, which 
here instead of one pint, N cut points randomly will be selected from two parents at the same 
locations [68-69]. Fig. 7 depicts an example of n-point crossover by n=2.  

 
Fig. 7. an example of N-point crossover 

2.3.3. Uniform Crossover 
Uniform crossover determines which parents can be used for reproducing a new gene by 

uniformity in combining the bits of both parents. In other words, it operates by exchanging bits 
from the parents into a new child based on a probability value or a uniform random number 𝑝 
(between 0 to 1). Practically, the 𝑝 value determines which child can use 𝑙𝑡ℎgenomes from the 
parent1 or parent2. Let’s suppose that, a genotype with length L is given as depicted in Fig. 8, 
then L random numbers are obtained from a uniform probability distribution, while each value 
is between ‘0’ and ‘1’. First, the P-values are calculated and, in addition, the operator checks 
each value and if it be less than the parameter 𝑝 (usually 0.5), then the gene is picked from the 
parent1, otherwise, it is chosen from the parent2 [68-70].  

 
P-Values = [0.36, 0.65, 0.24, 0.46, 0.89, 0.63, 0.12, 0.55] 

Fig. 8. An example of uniform crossover with genotype (L= 8) and 8 values  
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2.3.4. Flat (BLX) or Discrete Crossover 
Flat Crossover also applies the random numbers to reproduce one child from two 

parents.This operator functions the same as the uniform crossover, but the random numbers 
should be a subset of having the minimum and maximum of the genes. Generally, flat 
crossovers are employed in real-coded GAs [68-72].  

𝑃𝑎𝑟𝑒𝑛𝑡1 = ( )1.1 1,, ..., nx x  

𝑃𝑎𝑟𝑒𝑛𝑡2 = ( )2.1 2,, ..., nx x  

and a vector of random values ( )1, ..., nr r r=  

The Child1 ( )1 1
1 , ..., nx x=  can be calculated a vector of linear combinations by Eq.4.  

( for  , 1,..., )all i n=  

1
1, (1 ) , 1,...,i i i i ix r x r x i n= + − =  (4) 

and, so on. 

For more information about the crossover operators, we suggest the readers to review Ref [72].  

2.4. Mutation Operators 
Mutation is the process of randomly changing a part of the genetic material (genotype) of one 
selected parent to produce a new genotype. In the GAs, the mutation occurs when the 
recombination of two parents is done and, then it alters with a small probability. The variation 
between the mutation and recombination is that the recombination applies two parents to 
reproduce a new child whereas the mutation only focuses on a parent and alters its genotype to 
form the new child. Various mutation operators are employed in the GPs recently that several 
will be described below [68], [69], [73], [74]. 

2.4.1. Bitwise or Binary Representations 
This type of mutation operators works based on flipping (0 to 1, or 1 to 0) a small part of 

genotype. For example, a binary representation is given in Fig. 9, a sequence of bits (0’s and 
1’s), with length L, and a probability 𝑃𝑚 , afterward, the operator considers each gene 
separately and flips each bit if the generated P-value is less than the 𝑃𝑚 value. Therefore, on 
average, the number of mutations for a genotype with length is equal to 𝐿 × 𝑃𝑚. 

 
Fig. 9. an example of bitwise mutation, bits ‘3’ and ‘8’ are mutated in the new child [68], [75]. 

2.4.2. Integer Representations 
Creep mutation and random reversing are two types of mutation operators which are 

applied when the encoding procudure utilizes an integer representation. A probability 𝑃𝑚 is 
employed to determine how many mutations can be occurred and it is applied to a specific 
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gene. In the random reversing, each gene is permitted to be modified from a list of feasible 
values relying upon the probability 𝑃𝑚.  Commonly, this operator is chosen where the list of 
the encoded values are original values. In other words, the creep mutation is applied for basic 
characteristics and functions based on changing a small value on each genotype by probability 
𝑝 (i.e., the value could be either negative or positive), that more information about these types 
of mutation operators could be found in Ref [75], [76]. 

2.4.3. Permutation Representations 
In permutation representations, if a specific gene is mutated autonomously, then it might 

lead to duplication of genotype problems. For instance, a city tour with a genotype of 
{5,2,3,1,4} is given, and the mutation operator alters the third gene to 5, then the result will be 
{5,2,5,1,4}; therefore, there is no city tour ‘3’ in the genotype. The result of permutation 
confirms that it never gets to visit city ‘3’ while visits city ‘5’ twice. During the permutation of 
a genotype, the main point is, the operator should keep the same values and does not present, 
delete or replicate any specific genotype. There are different mutation operators that function 
based on permutation representations which are discussed in the following points [68], [76]. 

• Swap Mutation: it operates by randomly choosing two genes in the genotype and 
exchanges the selected genes of the parent. Fig. 10 depicts an example of the swap mutation 
operator [68], [76]. 

 
Fig. 10. Swap mutation, it swapped ‘1’ and ‘7’. 

 
• Insert Mutation: it functions by randomly choosing two genes in the genotype and shifts 
other genes to the next position index plus for the other genes [68], [76]. 

 
Fig. 11. an example of insert mutation. 

 
As depicted in Fig. 11, the genes ‘2’ and ‘6’ get selected, as well as, ‘6’ is hosted in the next 
of ‘2’ and so on (e.g., for 3, 4, 5). 
• Scramble Mutation: this operator acts by picking a part of the genotype and randomly 
scrambles the selected genes [68], [76].  

 
Fig. 12. an example of scramble mutation 

 
As shown in Fig. 12, the selected part of the parent is ‘4’ to ‘7’, afterward, it scrambles 

the genes to create the new genotype. 
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• Inverse Mutation: it also works by randomly picking a part of the genotype so that 
reverses the order of genes. [68], [76]. 

 
Fig. 13. an example of inverse mutation 

 
As depicted in Fig. 13, the selected part of the parent is ‘3’ to ‘6’, then, the order is reversed. 

3. Various Types of Genetic Programming 
During the past three decades, there have been done many types of research to progress the 
GPs in different applications, that can be classified in eight major types: including Tree-based 
GP, Stack-based GP, Linear GP, Extended Compact GP, Grammatical Evolution GP, as 
following types. In practice, almost all the various types of GPs have the same structure as 
depicted in Fig. 1, and different operators (e.g., selection, crossover and mutation). 
 

3.1. Tree-based Genetic Programming (TGP) 
As we have already explained above, the tree-based GP was the first type in that the 

programs are represented in tree structures which are evaluated recursively to generate the 
resulting multivariate expressions. In the tree-based GP, the basic nomenclature determines 
that a tree node (or node) is an operator (e.g., *, /, +, -, etc.) and a terminal node (or leaf) is a 
variable (e.g., a, b, c, d, etc.), [1-5], [77]. Lisp was the first programming language applied to 
tree-based GP due to having the same structure and similarities with the trees. However, many 
other languages such as C++, Java, and Python have been utilized to advance the tree-based 
GP applications [78]. An example of tree-based GP designed for simulating the evolutionary 
processes in the biological world with two types of species. This program is written in Java 
language which can be found on GitHub ref [79]. Table 2 depicts some applications of the 
tree-based GP. 

Table. 2. Some existing applications of the Tree-based GPs 

Refrences Scientific Area Goal of Application 

[1-5], [11]  Biological and Genomic DNA Expression, SNP analysis, Epistasis analysis, 
Cancer gene expression, Gene annotation, and 
Molecular structure optimization, etc. 

[7], [103]  Scientific, Statistical and 
Numerical Computing 

Quantom Computing, Solving Complex 
Optimization Problems, search problems, etc. 

[107]  Mobile Communication 
Infrastructures  

QoS routing, Communication Scaduling, etc. 

[108], [109]   Transportation Technology Non-linear transportation, Transportation planning, 
costs, Multi-stage supply chain networks, etc. 

[12]-[104-106]  Physical of Materials Solid state physics: electronic and other properties, 
Designe, Optical properties, and Spectroscopy (*), 
etc. 

[6], [110]  Image Processing Building Blocks, Face Recognition, and Pattern 
Recognition, Classification, etc. 
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3.2. Stack-based Genetic Programming (SGP) 
In this type of GPs, the programs execute on a stack-based virtual machine. In other words, the 
programs in the evolving population are represented in a stack-based programming language. 
Commonly, the specific languages differ between systems, but most are similar to FORTH 
insofar as programs are formed by instructions that obtain arguments from the data stacks and 
push results back on those data stacks again. In the Push family of languages, which were 
created specifically for the GP, a separate stack is presented for each data type, and, in addition, 
the program’s code can manipulate itself on the data stacks and consequently performed. 
Depending on the genetic operators used and the specific language, a stack-based GP can 
provide a variety of advantages over tree-based GP. These may consist bloat-free crossover 
and mutation operators, improvements or simplifications to the handling of the multiple data 
types, execution tracing, programs with loops that produce accurate outputs even when 
terminated prematurely, parallelism, the evolution of arbitrary control structures, and 
automatic simplification of evolved programs [78], [80]. Table 3 depicts some applications of 
the SGP. A Python-based environment and stack-based language for genetic programming can 
be found in Ref [93]. 

 
Table. 3. Some applications of the Stack-based GP 

Refrences Scientific Area Goal of Application 

[80], [114]  Automated design and Program 
Synthesis-analysis 

Benchmark problems, Automatic Programming, 
etc. 

[94], [95], 
[113] 

 High Performance Computing Parallel Computing, Vector Processing, GPU 
processing, etc. 

[111], 
[112]  

 Electronic Circuit Design Micro architectural and instruction design, 
Memory Management overhead, etc. 

 

 

3.3. Linear Genetic Programming (LGP) 
Linear GP is a variant of the GPs wherein the programs in a population are expressed as a 

series of instructions from powerful  programming language or machine code. The 
graph-structured data flow which occurs from several usages of register contents and the 
presence of structurally non-effective code (introns) are two main variations of the linear GP 
from the more common TGP. In the LGP, a linear tree is a program which consists of a 
variable number of unary operations and a single terminal. In addition, the linear GP varies 
from the binary string GAs since a population may include programs with different lengths 
and there may be more than two types of operations or more than two types of terminals. 
Basically, the LGP programs are expressed by a linear order of instructions, and they are 
simpler to read and operate on than their tree-based counterparts [81]. Table 4 lists some 
applications of the LGP. 
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Table. 4. Some applications of the LGP 

Refrences Scientific Area Goal of Application 

[81]  Data Mining and Knowledge 
Discovery 

Time Prediction, and Classification Problems, 
etc. 

[81]  Signal Processing and Image 
Processing 

Time series prediction, Control problems, etc.  

[115]  Hydrological phenomena. Prediction model for the river, Streamflow 
prediction, etc. 

An example of the LGP is written in Java for solving regression problems, that can be found in 
Ref [82]. 

 

3.4. Grammatical Evolution Genetic Programming (GEGP) 
Grammatical Evolution (GE) works based on the grammar strucure which joins principles 

from molecular biology to the symbolic power of formal grammars. GE’s rich modularity 
provides specific adaptability, making it possible to apply alternative search procedures, 
whether deterministic, evolutionary or some other methods. Moreover, it radically 
manipulates its behavior by only altering the grammar supplied. As grammar is employed for 
expressing the structures which are produced by the GE, it is trivial to change the output 
structures by only adopting the plain text grammar. This feature is one of the primary merits 
which makes the GE method so appealing. The genotype or phenotype (e.g., is a part of 
genotype) mapping indicates that in lieu of operating particularly on solution trees, as in the 
standard GP, the GE permits search operators to be executed on the genotype (e.g., binary or 
integer genes), moreover, partially resulting phenotypes, and the wholly formed phenotypic 
derivation trees themselves. One of the advantages of GE is that this mapping explains the use 
of search to various programming languages and other structures [83], [100], [116], [117]. 
Table 5 summarizes some applications of the GEGP. 

Table. 5. Some applications of the GEGP 

Refrences Scientific Area Goal of Application 

[116]  Automated 
Programming 

Automatic generation of benchmarks for plagiarism 
detection tools 

[117]  Biological and 
Genomic 

Petri net modeling of high-order genetic systems using 
grammatical evolution. 

[100], [121]  Financial Modeling Predicting corporate bankruptcy , bond credit ratings, 
Forecasting stock indices, etc. 

 

An example of GEGP is written in Java that can be found in Ref [84]. 
 

3.5. Extended Compact Genetic Programming (ECGP) 
Extended Compact GP (ECGP) works based on a key idea which the selection of a proper 

probability distribution is equal to linkage learning. The quantity of a reasonable distribution is 
measured based on minimum description length (MDL) models. The key idea of MDL models 
is that given all things are equivalent, simpler distributions are greater than the complex ones. 
The limitation of MDL assesses both inaccurate and complex models, whereby leading to an 
optimal probability distribution. Therefore, the restriction of MDL reformulates the problem 
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of obtaining a proper distribution as an optimization problem which reduces both the 
probability model and the population representation [85], [86]. In practice, the ECGA could 
solve complex problems in the binary domain. Moreover, it is accurate and reliable, due to 
having the ability of identifying building blocks, but several difficulties are experienced when 
we directly employ the ECGA to problems in the integer domain [87]. Table 6 summarizes 
some applications of the ECGP. 

Table 6. Some applications of the ECGP 

Refrences Scientific Area Goal of Application 

[96]  Transmission Power Systems solving optimum allocation of power quality 
monitors 

[97]  System on Chip in the Nanoscale 
Technologies 

efficient routing algorithm for Network-on-Chip 

[98]  Performance and Memory Space 
Optimization 

Memory saving optimization with limitted 
hardware 

 
An example of ECGP is written in MATLAB which can be found in Ref [88]. 
 

3.6. Cartesian Genetic Programming (CGP) 
Cartesian is a highly effective and flexible form of GP which encodes a graph illustration of a 
computer program. The CGP assigns computational structures (e.g., computer programs, 
mathematical equations, circuits, etc.) as a string of integers. The assigned integers, known as 
genes specify the operations of nodes in the graph, the links between nodes, the links to inputs 
and places in the graph where nodes obtain their input. Practically, employing a graph 
representation is very flexible as many computational structures could be expressed as graphs. 
A excellent example of this is artificial neural networks (ANNs) that could be easily encoded 
in CGP. Generally, the CGP obtains proper solutions very efficiently in a few evaluations. 
However, it employs many generations and utilizes extremely small populations (e.g., 
typically 5), where it is the best one from the previous generation [89]. Embedded CGP 
(E-CGP ) is an extension of the directed graph based CGP, that is able of automatically 
obtaining, expanding and re-using partial solutions in the form of modules. The E-CGP results 
have shown that it is more computationally effective than the CGP on developing solutions to 
a range of problems [118].  

 
Table 7. Some applications of the CGP & E-CGP 

Refrences Scientific Area Goal of Application 

[118]  High Performance Computing Lawnmower and Hierarchical-if-and-only-if (H-IFF) 
Problems 

[119], 
[125] 

 Digital Circuits Improving the evolvability of digital multipliers, 
Optimization of combinational Circuits, etc.  

[89]  Control Engineering Automatic visual defect detection, Process Control, etc. 
 

 

Table 7 summarizes some applications of the CGP & E-CGP. An example of CGP is written 
in Java which can be found in Ref [90]. 
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3.7. Probabilistic Incremental Program Evolution (PIPE) GP 
 Probabilistic incremental program evolution (PIPE) is an efficient type of automatic 

programming. The PIPE combines probability vector coding of program instructions, 
population-based incremental learning, and tree-coded programs to provide practical solutions, 
i.e., similar those applied in some variants of GP. Moreover, it iteratively produces progressive 
populations of operative programs based on an adaptive probability distribution over all 
feasible programs such that each iteration employs the best one to improve the distribution. 
Therefore, PIPE stochastically creates better and better programs. Since the distribution 
improvements rely only upon the best solution of the current population, PIPE could assess 
program populations efficiently when the aim is to find a program by the minimum runtime 
[91]. Table 8 summarizes some applications of the PIPE. 

Table. 8. Some applications of the PIPE 
Refrences Scientific Area Goal of Application 

[99]  Machine learning 
 

Learning speedup by evaluating programes on 
parallel (if the idea is to discover programs by 
minimal runtime) 

[99]  Multigene Tasks Automatoc Task Decomposition, solving tasks 
with high algorithmic complexity 

[99]  Long  or Shorter Time Lag 
Challenge 

finding solutions by classifying all the sequences 
of the training data 

 

An example of the PIPE is written in Ruby which can be found in Ref [92]. 

3.8. Strongly-Typed Genetic Programming (STGP) 
Basically, the standard form of GP has the limitation, is identified as “closure,” i.e. that all 

variables, arguments, constants for terminals, and values returned from terminals must be of 
the same data types. In this case, while the programs manage several data types and include 
terminals devised to work on specific data types, it could propel to redundant large search 
times or unnecessarily poor generalization efficiency [20], [100]. To address this deficiency, 
Montana was proposed an improved version of GP called “Strongly typed genetic 
programming (STGP)” which applies data type constraints and whose use of the generic 
terminals. In the STGP, every terminal has a type, and each function has types for each of its 
arguments and a type for its return value [4]. Moreover, it makes the STGP more potent than 
other techniques to type constraint enforcement. Therefore, it is able to solve a wide variety of 
moderately difficult problems concerning several data types [29], [101]. Table 9 summarizes 
some applications of the STGP. An example of STGP is written in Python which can be found 
in Ref [102]. 

Table 9. Some applications of the STGP 
Refrences Scientific Area Goal of Application 

[20], [29] 

, [123] 

 Knowledge discovery 
 

Huge data classification, and knowledge 
extraction, Game playing, etc. 

[20], [29]   Data Mining Extracting hidden patterns, Classification rules, 
etc.,  

[20], [29]  Data Center/Server farm Data Integration, Data Cleaning, Data 
Transformation, etc. 
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3.9. Advantages and Disadvantages GPs 
In this subsection, we summarize some advantages and disadvantages for various types of GPs 
with respect to the evaluated Algorithmic Complexity (AC) on complex problems in the 
existing literature. Since the genetic operators for different types of GPs are different from 
each other, we have no common criteria to compare the performance of them together. 
Moreover, we have to mention that all the listed advantages and disadvantages discovered 
from the mentioned references as depicted in Table 10.   
 

4. Suggestions for the Future Works 
The GP is a very powerful and flexible programming technique that could be employed in 
various ways to solve complex problems in different scientific areas such as computer science, 
biology, and chemistry, transportation engineering, financial engineering, etc. In this section, 
we suggest some directions aimed at guiding researchers on the best options to employ various 
types of GPs depending on the characteristics of the applications. However, we have to notice 
that these guidelines are general and empirically obtained rules of thumb; these suggestions 
must not be considered rigidly or dogmatically. 
• With regard to the implementation of various types of GPs, we have summarized some 
applications and open-source examples for each type of GP separately. It provides a useful set 
of information about various types of GPs that the beginners can easily find them and may 
apply the source codes for further works. 
• One of the most important decisions to be taken when considering the application of GP to 
a specific area is the related characteristics to be considered. For example, if the researchers 
aim to use a type of GP for vector processing with low complexity, then, the best option is to 
employ the Stack-based GP by using a related crossover and mutation operators. 
 

Table 10. advantages and disadvantages of various types of GPs  
Type of GP Advantages Disadvantages 
Tree-based 

(TGP) 
[77], [100], 

[103] 

 Higher-order functions are a powerful 
addition to the TGP which enables the 
evolution of programs with greater than 
constant-time complexity 

 Closure (having the same data type 
between operators and terminals), 
which causes to increase the AC in 
the multiple data type problems 

 High AC in the Lawnmower and 
H-IFF problems 

Stack-based 
(SGP)  

[80], [94], 
[95],  [113], 
[114], [120] 

 High performance on symbolic regression 
problem 

 Low AC (outperforms the TGP)  
 Efficient performance in parallel computing 

 Inefficient performance where long 
programs (variables) are pushed in 
the stack on limited resources systems 

 It can only be implemented on stack 
support languages. 

Linear 
(LGP) 
[81] 

 
 

 High flexibility (e.g., allows more freedom 
on the internal representation) 

 Low AC 
 Allowing a more efficient evaluation of 

programs 

 Higher compiler overhead than the 
TGP 

Grammatical 
Evolution 
(GEGP) 

[78], [83], 
[100], [121], 

[124] 

 The flexibility of language choice that it 
allows (e.g. the user could output algorithm 
in any language and utilize a compiler for 
that language to write an executable code to 
calculate a fitness). 

 Low AC, delineating the search space 

 High AC in the Travelling Salesman 
problem 
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obviously and avoiding unproductive search 
in infeasible regions, 

 Low AC and high predictive accuracy in 
financial problems 

Extended 
Compact 
(ECGP) 

[96], [97], 
[98], [122] 

 Low AC and better solutions for the 
economic dispatch problem (outperforms 
the TGP) 

 Creating offspring (child) without 
disrupting linkage groups of decision 
variables. 

 ECGP can handle only binary 
variables. 

Cartesian 
(CGP) 

Embedded 
E-CGP 

[89], [118], 
[119], [125] 

 CGP has low AC (better runtime) in the 
Lawnmower and H-IFF problems 
(outperforms the TGP and SGP) 

 E-CGP is more efficient than CGP in the 
difficult problems 

 CGP and its derivatives suffer from 
over-fitting on the training data when 
applied to series forecasting 

 PIPE 
[99] 

 

 By several time steps between a relevant 
input and the corresponding output, it could 
outperform even the best neural network 
algorithms (Long Short-Term Memory) 
 It can solve difficult tasks (low AC) in an 

acceptable time 
 Low AC in the long time lag task 

 High AC in the shorter time lag task 

Strongly 
Typed 

(STGP) [4], 
[20], [29], 

[123], [126] 

 Low AC in Multi data type problems 
 Low AC in Game playing problem 
 Producing more accurate solutions in 

classification problems 

 High AC or more training time in 
Classification problems 

Note  Low AC: “low runtime or better efficiency,” High AC: “high runtime or low efficiency” 

 

• In some occasions, efficiency and accuracy are the two most significant factors that specify 
the effectiveness of the GP. For example, in financial prediction domains, a slight increase in 
predictive accuracy can indicate a higher income percentage. The use of an automatic 
programming such as GEGP can provide more predictive accuracy and appropriate expression 
in the financial domain. The GEGPs are often utilized also in applications related to estimating 
forecasting stock indices, bond credit ratings, corporate bankruptcy, etc. The reason is that the 
expression given by the GEGPs is very akin to the kind of mathematical operations and 
financial predictions usually used in the financial systems. 
• One of the main disadvantages of the GP is its high training time, that embitters when 
combined with the need for dealing with the huge dataset often found in classification 
problems. It is necessary to investigate into the potentialities available to perform the GP 
training as efficient as possible, like distributed and parallel GP or a combination of two types 
of GPs. 
• To sum up, which direction is suitable for applying the GP? We cannot present an accurate 
or perfect answer to this question. The researchers should take into account many 
considerations like various advantages and disadvantages of GPs, together with the guidelines 
that we have collected. Also, they should consider whether the GP approaches could be 
appropriate or not for the problem at hand. When the researcher figures out that some of the 
merits of GP can give a valuable benefit or fits naturally to the specific needs and attributes of 
the problem at issue; therefore, a proper type of GP should probably be given a try. 
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5. Conclusions 
This survey provides a comprehensive review of various aspects of GP. First of all, we have 
overviewed a standard framework of GP including, key steps, selection strategies, crossover 
and mutation operators. Secondly, we have categorized various type of GP techniques, and 
their applications among some example source codes and, moreover, we summarized some 
advantages and disadvantages of various types of GPs. Finally, we suggested some of the 
guidelines and directions that could merit further attention in future works. GP is still an 
efficient evolutionary algorithm can be desirable to obtain the best solution from the problems 
of the emerging field of next-generation sequencing. It is obvious that GP is still a growing 
field of research, whose practitioners are still investigating its potentialities and limitations. 
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