Kim, Soo-Won;Yuh, Baeg-Youh;Park, Choon-Wok;Kang, Moon-Myung
Journal of Korean Association for Spatial Structures
/
v.4
no.2
s.12
/
pp.89-97
/
2004
The objective of this study is the development of a scheme and discrete optimum design algorithm, which is based on the genetic algorithm. The algorithm can perform both scheme and size optimum designs of plane trusses. The developed Scheme genetic algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. However, its application to the complicated structures has been limited because of the extreme time need for a number of structural analyses. This study solves the problem by introducing the size & scheme genetic algorithm operators into the genetic algorithm. The genetic process virtually takes no time. However, the evolutionary process requires a tremendous amount of time for a number of structural analyses. Therefore, the application of the genetic algorithm to the complicated structures is extremely difficult, if not impossible. The scheme genetic algorithm operators was introduced to overcome the problem and to complement the evolutionary process. It is very efficient in the approximate analyses and scheme and size optimization of plane trusses structures and considerably reduces structural analysis time. Scheme and size discrete optimum combined into the genetic algorithm is what makes the practical discrete optimum design of plane fusses structures possible. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to various optimum design examples: plane pratt, howe and warren truss.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.5
/
pp.2574-2587
/
2019
Blind Source Separation (BSS) is a technique used to separate supposed independent sources of signals from a given set of observations. In this paper, the High Exploration Particle Swarm Optimization (HEPSO) algorithm, which is an enhancement of the Particle Swarm Optimization (PSO) algorithm, has been used to separate a set of source signals. Compared to PSO algorithm, HEPSO algorithm depends on two additional operators. The first operator is based on the multi-crossover mechanism of the genetic algorithm while the second one relies on the bee colony mechanism. Both operators have been employed to update the velocity and the position of the particles respectively. Thus, they are used to find the optimal separating matrix. The proposed method enhances the overall efficiency of the standard PSO in terms of good exploration and performance. Based on many tests realized on speech and music signals supplied by the BSS demo, experimental results confirm the robustness and the accuracy of the introduced BSS technique.
In this paper, we propose an automatic melody composition system that can generate a sophisticated melody by adding non-harmony tone in the given chord progression. An overall procedure consists of two steps, which are the rhythm generation and melody generation parts. In the rhythm generation part, we designed new fitness functions for rhythm that can be controlled by a user setting parameters. In the melody generation part, we designed new fitness functions for melody based on harmony theory. We also designed evolutionary operators that are conducted by considering a musical context to improve computational efficiency. In the experiments, we compared four metaheuristics to optimize the rhythm fitness functions: Simple Genetic Algorithm (SGA), Elitism Genetic Algorithm (EGA), Differential Evolution (DE), and Particle Swarm Optimization (PSO). Furthermore, we compared proposed genetic algorithm for melody with the four algorithms for verifying performance. In addition, composition results are introduced and analyzed with respect to musical correctness.
This paper considers the parallel machines scheduling problem characterized as a multi-objective combinatorial problem. As this problem belongs to the NP-complete problem, genetic algorithms are applied instead of the traditional analytical approach. The purpose of this study is to show how the problem can be effectively solved by using genetic algorithms with a permutation approach. First, a permutation representation which can effectively represent the chromosome is introduced for this problem . Next, a schedule builder which employs the combination of scheduling theories and a simple heuristic approach is suggested. Finally, through the computer experiments of genetic algorithm to test problems, we show that the niche formation method does not contribute to getting better solutions and that the PMX crossover operator is the best among the selected four recombination operators at least for our problem in terms of both the performance of the solution and the operational convenience.
Journal of the Korean Operations Research and Management Science Society
/
v.14
no.2
/
pp.47-47
/
1989
This paper considers the parallel machines scheduling problem characterized as a multi-objective combinatorial problem. As this problem belongs to the NP-complete problem, genetic algorithms are applied instead of the traditional analytical approach. The purpose of this study is to show how the problem can be effectively solved by using genetic algorithms with a permutation approach. First, a permutation representation which can effectively represent the chromosome is introduced for this problem . Next, a schedule builder which employs the combination of scheduling theories and a simple heuristic approach is suggested. Finally, through the computer experiments of genetic algorithm to test problems, we show that the niche formation method does not contribute to getting better solutions and that the PMX crossover operator is the best among the selected four recombination operators at least for our problem in terms of both the performance of the solution and the operational convenience.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.225-228
/
2001
DNA computing has been applied to the problem of getting an optimal solution since Adleman's experiment. DNA computing uses strings with various length and four-type bases that makes more useful for finding a global optimal solutions of the complex multi-modal problems. This paper presents DNA coding method for finding optimal solution of the multi-modal function and compares the efficiency of this method with the genetic algorithms (GA). GA searches effectively an optimal solution via the artificial evolution of individual group of binary string and DNA coding method uses a tool of calculation or Information store with DNA molecules and four-type bases denoted by the symbols of A(Ademine), C(Cytosine), G(Guanine) and T(Thymine). The same operators, selection, crossover, mutation, are applied to the both DNA coding algorithm and genetic algorithms. The results show that the DNA based algorithm performs better than GA.
Proceedings of the Korean Nuclear Society Conference
/
1995.10a
/
pp.123-128
/
1995
A classical PID controller is designed by applying the GA (Genetic Algorithm) which searches the optimal parameters through three major operators of reproduction, crossover and mutation under the given constraints. The GA could minimize the designer's interference and the whole design process could easily be automated. In contrast with other traditional PID design methods which allows for the system output responses only, the design with the GA can take account of the magnitude or the rate of change of control input together with the output responses, which reflects the more realistic situations. Compared with other PIDs designed by the traditional methods such as Ziegler and analytic, the PID by the GA shows the superior response characteristics to those of others with the least control input energy.
Proceedings of the Korea Society for Simulation Conference
/
1999.10a
/
pp.114-120
/
1999
본 연구는 Heuristic 알고리즘 및 유전자알고리즘(GA)을 이용하여 3단계의 통합차량운송계획 모델의 개발이다. 차량경로문제(VRP : Vehicle Routing Problem)를 해결하기 위한 접근방법으로 기존의 Saving 알고리즘을 개선하여 사용하였으며 유전자 알고리즘(Genetic Algorithm)의 각종 연산자 (Operators)들을 계산하여 사용하였다. 본 모델은 다음 3단계의 접근방법을 사용하였다 ; 1) 다 물류 센터의 문제해결을 위한 영역활당(Sector Clustering) 모델, 2) 경로계획모델(VRP Model), 및 3) 최적 운송계획모델(GA-TSP Model). 본 모델들을 다양한 운송환경에서, 거리산정방법, 가용운송장비 대수, 운송시간의 제한, 물류센터 및 운송지점의 위치 및 수요량 등 다양한 파라메터들을 고려한 통합시스템으로 3개의 Component로 구성된 GUI-Type 프로그램을 개발하고 Sample 응용결과를 보였으며 기존의 모델들 보다 우수한 결과를 보였다.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.11
no.4
/
pp.217-222
/
2011
Genetic algorithms are one of the most important methods used to solve the Traveling Salesman Problem. Therefore, many researchers have tried to improve the Genetic Algorithm by using different methods and operations in order to find the optimal solution within reasonable time. This paper intends to find a new approach that adopts an improved genetic algorithm to solve the Traveling Salesman Problem, and compare with the well known heuristic method, namely, Kohonen Self-Organizing Map by using different data sets of symmetric TSP from TSPLIB. In order to improve the search process for the optimal solution, the proposed approach consists of three strategies: two separate tour segments sets, the improved crossover operator, and the improved mutation operator. The two separate tour segments sets are construction heuristic which produces tour of the first generation with low cost. The improved crossover operator finds the candidate fine tour segments in parents and preserves them for descendants. The mutation operator is an operator which can optimize a chromosome with mutation successfully by altering the mutation probability dynamically. The two improved operators can be used to avoid the premature convergence. Simulation experiments are executed to investigate the quality of the solution and convergence speed by using a representative set of test problems taken from TSPLIB. The results of a comparison between the new approach using the improved genetic algorithm and the Kohonen Self-Organizing Map show that the new approach yields better results for problems up to 200 cities.
Journal of the Korean Operations Research and Management Science Society
/
v.34
no.2
/
pp.101-111
/
2009
This paper considers two-sided assembly line balancing with preemptive multiple goals. In the problem, three goals are taken into account in the following priority order : minimizing the number of mated-stations, achieving the goal level of workload smoothness, and maximizing the work relatedness. An evolutionary algorithm is used to solve the multiple goal problems. A new structure is presented in the algorithm, which is helpful to searching the solution satisfying the goals in the order of the priority. The proper evolutionary components such as encoding and decoding method, evaluation scheme, and genetic operators, which are specific to the problem being solved, are designed in order to improve the algorithm's performance. The computational results show that the proposed algorithm is premising in the solution quality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.