• Title/Summary/Keyword: genetic Neural Network

Search Result 531, Processing Time 0.024 seconds

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

Nonlinear Function Approximation of Moduled Neural Network Using Genetic Algorithm (유전 알고리즘을 이용한 모듈화된 신경망의 비선형 함수 근사화)

  • 박현철;김성주;김종수;서재용;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.10-13
    • /
    • 2001
  • Nonlinear Function Approximation of Moduled Neural Network Using Genetic Algorithm Neural Network consists of neuron and synapse. Synapse memorize last pattern and study new pattern. When Neural Network learn new pattern, it tend to forget previously learned pattern. This phenomenon is called to catastrophic inference or catastrophic forgetting. To overcome this phenomenon, Neural Network must be modularized. In this paper, we propose Moduled Neural Network. Modular Neural Network consists of two Neural Network. Each Network individually study different pattern and their outputs is finally summed by net function. Sometimes Neural Network don't find global minimum, but find local minimum. To find global minimum we use Genetic Algorithm.

  • PDF

Nonlinear System Modelling Using Neural Network and Genetic Algorithm

  • Kim, Hong-Bok;Kim, Jung-Keun;Hwang, Seung-Wook;Ha, Yun-Su;Jin, Gang-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.2-71
    • /
    • 2001
  • This paper deals with nonlinear system modelling using neural network and genetic algorithm. Application of neural network to control and identification is actively studied because of their approximating ability of nonlinear function. It is important to design the neural network with optimal structure for minimum error and fast response time. Genetic algorithm is getting more popular nowadays because of their simplicity and robustness. In this paper, We optimize neural network structure using genetic algorithm. The genetic algorithm uses binary coding for neural network structure and search for optimal neural network structure of minimum error and response time. Through extensive simulation, Optimal neural network structure is shown to be effective for ...

  • PDF

A Study on Coagulant Feeding Control of the Water Treatment Plant Using Intelligent Algorithms (지능알고리즘에 의한 정수장 약품주입제어에 관한 연구)

  • 김용열;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • It is difficult to determine the feeding rate of coagulant in the water treatment plant, due to nonlinearity, multivariables and slow response characteristics etc. To deal with this difficulty, the genetic-fuzzy system genetic-equation system and the neural network system were used in determining the feeding rate of the coagulant. Fuzzy system and neural network system are excellently robust in multivariables and nonlinear problems. but fuzzy system is difficult to construct the fuzzy parameter such as the rule table and the membership function. Therefore we made the genetic-fuzzy system by the fusion of genetic algorithms and fuzzy system, and also made the feeding rate equation by genetic algorithms. To train fuzzy system, equation parameter and neural network system, the actual operation data of the water treatment plant was used. We determined optimized feeding rates of coagulant by the fuzzy system, the equation and the neural network and also compared them with the feeding rates of the actual operation data.

Designing Neural Network Using Genetic Algorithm (유전자 알고리즘을 이용한 신경망 설계)

  • Park, Jeong-Sun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2309-2314
    • /
    • 1997
  • The study introduces a neural network to predict the bankruptcy of insurance companies. As a method to optimize the network, a genetic algorithm suggests optimal structure and network parameters. The neural network designed by genetic algorithm is compared with discriminant analysis, logistic regression, ID3, and CART. The robust neural network model shows the best performance among those models compared.

  • PDF

A Study on the Optimization of PD Pattern Recognition using Genetic Algorithm (유전알고리즘을 이용한 부분방전 패턴인식 최적화 연구)

  • Kim, Seong-Il;Lee, Sang-Hwa;Koo, Ja-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.126-131
    • /
    • 2009
  • This study was carried out for the reliability of PD(Partial Discharge) pattern recognition. For the pattern recognition, the database for PD was established by use of self-designed insulation defects which occur and were mostly critical in GIS(Gas Insulated Switchgear). The acquired database was analyzed to distinguish patterns by means of PRPD(Phase Resolved Partial Discharge) method and stored to the form with to unite the average amplitude of PD pulse and the number of PD pulse as the input data of neural network. In order to prove the performance of genetic algorithm combined with neural network, the neural networks with trial-and-error method and the neural network with genetic algorithm were trained by same training data and compared to the results of their pattern recognition rate. As a result, the recognition success rate of defects was 93.2% and the neural network train process by use of trial-and-error method was very time consuming. The recognition success rate of defects, on the other hand, was 100% by applying the genetic algorithm at neural network and it took a relatively short time to find the best solution of parameters for optimization. Especially, it could be possible that the scrupulous parameters were obtained by genetic algorithm.

GENIE : A learning intelligent system engine based on neural adaptation and genetic search (GENIE : 신경망 적응과 유전자 탐색 기반의 학습형 지능 시스템 엔진)

  • 장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.27-34
    • /
    • 1996
  • GENIE is a learning-based engine for building intelligent systems. Learning in GENIE proceeds by incrementally modeling its human or technical environment using a neural network and a genetic algorithm. The neural network is used to represent the knowledge for solving a given task and has the ability to grow its structure. The genetic algorithm provides the neural network with training examples by actively exploring the example space of the problem. Integrated into the training examples by actively exploring the example space of the problem. Integrated into the GENIE system architecture, the genetic algorithm and the neural network build a virtually self-teaching autonomous learning system. This paper describes the structure of GENIE and its learning components. The performance is demonstrated on a robot learning problem. We also discuss the lessons learned from experiments with GENIE and point out further possibilities of effectively hybridizing genetic algorithms with neural networks and other softcomputing techniques.

  • PDF

Optimum Design of a linear Induction Motor using Genetic Algorithm and Neural Network (유전알고리즘과 신경회로망을 이용한 선형유도전동기의 최적설계)

  • 김창업
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.29-35
    • /
    • 2003
  • In this paper, a new optimum design method is proposed for the linear induction motor(LIM). The Genetic Neural Network(GNN) is introduced in the optimum design of LIM and the simulation result is compared with the Genetic Algorithm(GA) and Neural Network(NN). The maximum thrust and trust/weight are selected as the object functions. The comparison showed that the proposed method is better than GA and NN.

A Study on Optimal Neural Network Structure of Nonlinear System using Genetic Algorithm (유전 알고리즘을 이용한 비선형 시스템의 최적 신경 회로망 구조에 관한 연구)

  • Kim, Hong-Bok;Kim, Jeong-Keun;Kim, Min-Jung;Hwang, Seung-Wook
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.221-225
    • /
    • 2004
  • This paper deals with a nonlinear system modelling using neural network and genetic algorithm Application q{ neural network to control and identification is actively studied because of their approximating ability of nonlinear function. It is important to design the neural network with optimal structure for minimum error and fast response time. Genetic algorithm is getting more popular nowadays because of their simplicity and robustness. in this paper, we optimize a neural network structure using genetic algorithm The genetic algorithm uses binary coding for neural network structure and searches for an optimal neural network structure of minimum error and fast response time. Through an extensive simulation, the optimal neural network structure is shown to be effective for identification of nonlinear system.