• Title/Summary/Keyword: generative chat system

Search Result 12, Processing Time 0.019 seconds

An Empirical Study on the Intention to Continue Using Generative AI in Engaged Learning: Focusing on the ChatGPT Case (참여형 학습에서 생성형 AI 지속 사용 의도에 대한 실증적 연구: ChatGPT 사례 중심으로)

  • Kyungsoon Kim;Nacil Kim;Myoungsoo Kim;Yongtae Shin
    • Journal of Information Technology Services
    • /
    • v.22 no.6
    • /
    • pp.17-35
    • /
    • 2023
  • This study investigated how helpful the use of generative AI such as ChatGPT is in conducting engaged learning at each university. In this study, based on the experiences of users using generative AI technology, we analyzed the relationship between usability and ease in consideration of the characteristics of learners, and examined whether there is an intention to continue using generative AI technology in the future. In this study, in order to verify the factors affecting the intention to use ChatGPT technology in order to solve the problems given in the participating classes, we examined previous papers based on the Technology Acceptance Model (TAM) and the Information System Success Model (IS), extracted the factors affecting the intention of ChatGPT technology, and presented the research model and hypothesis. Empirical research on the continuous use of generative AI in participatory learning using ChatGPT was conducted to determine whether it is suitable for long-term and continuous use in the educational environment, and whether it is sustainable by examining the intention of learners to continue using it. First, user satisfaction was positively related to the intention to continue using generative AI technology. Second, if the user experience has a great influence on the intention to continue using ChatGPT technology, and users gain experiences such as usefulness, interest, and effective response in the process of using the technology, the evaluation of the technology is positively formed and the intention to continue using it is high. Third, the ease of use of the technology also showed that it was intended to be used continuously when an environment was provided in which users could easily and conveniently utilize generative AI technology.

Knowledge Embedding Method for Implementing a Generative Question-Answering Chat System (생성 기반 질의응답 채팅 시스템 구현을 위한 지식 임베딩 방법)

  • Kim, Sihyung;Lee, Hyeon-gu;Kim, Harksoo
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.134-140
    • /
    • 2018
  • A chat system is a computer program that understands user's miscellaneous utterances and generates appropriate responses. Sometimes a chat system needs to answer users' simple information-seeking questions. However, previous generative chat systems do not consider how to embed knowledge entities (i.e., subjects and objects in triple knowledge), essential elements for question-answering. The previous chat models have a disadvantage that they generate same responses although knowledge entities in users' utterances are changed. To alleviate this problem, we propose a knowledge entity embedding method for improving question-answering accuracies of a generative chat system. The proposed method uses a Siamese recurrent neural network for embedding knowledge entities and their synonyms. For experiments, we implemented a sequence-to-sequence model in which subjects and predicates are encoded and objects are decoded. The proposed embedding method showed 12.48% higher accuracies than the conventional embedding method based on a convolutional neural network.

A Study on Big Data Analysis of Related Patents in Smart Factories Using Topic Models and ChatGPT (토픽 모형과 ChatGPT를 활용한 스마트팩토리 연관 특허 빅데이터 분석에 관한 연구)

  • Sang-Gook Kim;Minyoung Yun;Taehoon Kwon;Jung Sun Lim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.15-31
    • /
    • 2023
  • In this study, we propose a novel approach to analyze big data related to patents in the field of smart factories, utilizing the Latent Dirichlet Allocation (LDA) topic modeling method and the generative artificial intelligence technology, ChatGPT. Our method includes extracting valuable insights from a large data-set of associated patents using LDA to identify latent topics and their corresponding patent documents. Additionally, we validate the suitability of the topics generated using generative AI technology and review the results with domain experts. We also employ the powerful big data analysis tool, KNIME, to preprocess and visualize the patent data, facilitating a better understanding of the global patent landscape and enabling a comparative analysis with the domestic patent environment. In order to explore quantitative and qualitative comparative advantages at this juncture, we have selected six indicators for conducting a quantitative analysis. Consequently, our approach allows us to explore the distinctive characteristics and investment directions of individual countries in the context of research and development and commercialization, based on a global-scale patent analysis in the field of smart factories. We anticipate that our findings, based on the analysis of global patent data in the field of smart factories, will serve as vital guidance for determining individual countries' directions in research and development investment. Furthermore, we propose a novel utilization of GhatGPT as a tool for validating the suitability of selected topics for policy makers who must choose topics across various scientific and technological domains.

Over the Rainbow: How to Fly over with ChatGPT in Tourism

  • Taekyung Kim
    • Journal of Smart Tourism
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Tourism and hospitality have encountered significant changes in recent years as a result of the rapid development of information technology (IT). Customers now expect more expedient services and customized travel experiences, which has intensified competition among service providers. To meet these demands, businesses have adopted sophisticated IT applications such as ChatGPT, which enables real-time interaction with consumers and provides recommendations based on their preferences. This paper focuses on the AI support-prompt middleware system, which functions as a mediator between generative AI and human users, and discusses two operational rules associated with it. The first rule is the Information Processing Rule, which requires the middleware system to determine appropriate responses based on the context of the conversation using techniques for natural language processing. The second rule is the Information Presentation Rule, which requires the middleware system to choose an appropriate language style and conversational attitude based on the gravity of the topic or the conversational context. These rules are essential for guaranteeing that the middleware system can fathom user intent and respond appropriately in various conversational contexts. This study contributes to the planning and analysis of service design by deriving design rules for middleware systems to incorporate artificial intelligence into tourism services. By comprehending the operation of AI support-prompt middleware systems, service providers can design more effective and efficient AI-driven tourism services, thereby improving the customer experience and obtaining a market advantage.

Foreign Language Self Study Learning System Using Generative Artificial Intelligence (생성형 인공지능을 활용한 외국어 작문 자가 학습 시스템)

  • Ji - Woong-Kim;Jeong - Joon Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.587-588
    • /
    • 2023
  • 최근 텍스트 생성형 인공지능인 ChatGPT가 화두가 되면서 생성형 인공지능을 이용한 서비스에 사람들의 관심이 높아졌다. 이를 활용하여 시간과 비용이 많이 드는 분야인 외국어 작문 학습을 자기 주도적으로 학습할 수 있을 것이라 조망하였다. 따라서 텍스트 생성형 인공지능인 ChatGPT API를 활용하여 사용자가 자기 주도적으로 외국어를 학습할 수 있는 방향성을 제시하고 더욱 쉽고 저렴한 비용으로 외국어를 익힐 수 있도록 하는 시스템을 개발한다.

Analysis of Discriminatory Patterns in Performing Arts Recognized by Large Language Models (LLMs): Focused on ChatGPT (거대언어모델(LLM)이 인식하는 공연예술의 차별 양상 분석: ChatGPT를 중심으로)

  • Jiae Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.401-418
    • /
    • 2023
  • Recently, the socio-economic interest in Large Language Models (LLMs) has been growing due to the emergence of ChatGPT. As a type of generative AI, LLMs have reached the level of script creation. In this regard, it is important to address the issue of discrimination (sexism, racism, religious discrimination, ageism, etc.) in the performing arts in general or in specific performing arts works or organizations in a large language model that will be widely used by the general public and professionals. However, there has not yet been a full-scale investigation and discussion on the issue of discrimination in the performing arts in large-scale language models. Therefore, the purpose of this study is to textually analyze the perceptions of discrimination issues in the performing arts from LMMs and to derive implications for the performing arts field and the development of LMMs. First, BBQ (Bias Benchmark for QA) questions and measures for nine discrimination issues were used to measure the sensitivity to discrimination of the giant language models, and the answers derived from the representative giant language models were verified by performing arts experts to see if there were any parts of the giant language models' misperceptions, and then the giant language models' perceptions of the ethics of discriminatory views in the performing arts field were analyzed through the content analysis method. As a result of the analysis, implications for the performing arts field and points to be noted in the development of large-scale linguistic models were derived and discussed.

Generative AI Jeonse Fraud Prevention System (생성형 인공지능 전세 사기 방지 시스템)

  • Yeon-Jae Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.173-180
    • /
    • 2024
  • Along with its importance, the real estate market poses risks of various fraudulent activities. Recently, a surge in real estate-related scams, such as lease fraud, has caused great financial damage to many ordinary people. These problems are often caused by the complexity of real estate transactions and information imbalance. Therefore, there is an urgent need to secure reliability and improve transparency in the transaction process. In this paper, to solve this real estate fraud problem, we propose a chatbot system using digital technology and artificial intelligence, especially GPT (Generative Pre-Trained Transformer). This system serves to protect users from fraud by providing them with precautions and confirmations in the lease transaction process. In addition, GPT-based chatbots respond to questions from users in time, contributing to reducing uncertainty in the transaction process and increasing reliability.

Development of a Regulatory Q&A System for KAERI Utilizing Document Search Algorithms and Large Language Model (거대언어모델과 문서검색 알고리즘을 활용한 한국원자력연구원 규정 질의응답 시스템 개발)

  • Hongbi Kim;Yonggyun Yu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.31-39
    • /
    • 2023
  • The evolution of Natural Language Processing (NLP) and the rise of large language models (LLM) like ChatGPT have paved the way for specialized question-answering (QA) systems tailored to specific domains. This study outlines a system harnessing the power of LLM in conjunction with document search algorithms to interpret and address user inquiries using documents from the Korea Atomic Energy Research Institute (KAERI). Initially, the system refines multiple documents for optimized search and analysis, breaking the content into managable paragraphs suitable for the language model's processing. Each paragraph's content is converted into a vector via an embedding model and archived in a database. Upon receiving a user query, the system matches the extracted vectors from the question with the stored vectors, pinpointing the most pertinent content. The chosen paragraphs, combined with the user's query, are then processed by the language generation model to formulate a response. Tests encompassing a spectrum of questions verified the system's proficiency in discerning question intent, understanding diverse documents, and delivering rapid and precise answers.

End-to-End Generative Question-Answering Chat System Using Copying and Retrieving Mechanisms (복사 방법 및 검색 방법을 이용한 종단형 생성 기반 질의응답 채팅 시스템)

  • Kim, Sihyung;Kim, HarkSoo;Kwon, Oh-Woog;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.25-28
    • /
    • 2017
  • 채팅 시스템은 기계와 사람이 서로 의사소통 하는 시스템이다. 의사소통 과정에서 질문을 하고 질문에 대한 답변을 하는 질의응답 형태의 의사소통이 상당히 많다. 그러나 기존 생성 기반 채팅 시스템에서 자주 사용되는 Sequence-to-sequence모델은 질문에 대한 답변보다는 좀 더 일반적인 문장을 생성하는 경우가 대부분이다. 이러한 문제를 해결하기 위해 본 논문에서는 복사 방법과 검색 방법을 이용한 생성 기반 질의응답 채팅 시스템을 제안한다. 템플릿 기반으로 구축한 데이터를 통한 실험에서 제안 시스템은 복사 방법만 이용한 질의응답 시스템 보다 45.6% 높은 정확도를 보였다.

  • PDF

End-to-End Generative Question-Answering Chat System Using Copying and Retrieving Mechanisms (복사 방법 및 검색 방법을 이용한 종단형 생성 기반 질의응답 채팅 시스템)

  • Kim, Sihyung;Kim, HarkSoo;Kwon, Oh-Woog;Kim, Young-Gil
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.25-28
    • /
    • 2017
  • 채팅 시스템은 기계와 사람이 서로 의사소통 하는 시스템이다. 의사소통 과정에서 질문을 하고 질문에 대한 답변을 하는 질의응답 형태의 의사소통이 상당히 많다. 그러나 기존 생성 기반 채팅 시스템에서 자주 사용되는 Sequence-to-sequence모델은 질문에 대한 답변보다는 좀 더 일반적인 문장을 생성하는 경우가 대부분이다. 이러한 문제를 해결하기 위해 본 논문에서는 복사 방법과 검색 방법을 이용한 생성 기반 질의응답 채팅 시스템을 제안한다. 템플릿 기반으로 구축한 데이터를 통한 실험에서 제안 시스템은 복사 방법만 이용한 질의응답 시스템 보다 45.6% 높은 정확도를 보였다.

  • PDF