• 제목/요약/키워드: generation efficiency

Search Result 3,130, Processing Time 0.028 seconds

Research of the PV Tracking System (태양광 추적장치 연구)

  • Seo, Myeong-Hwan;Kim, Yoon-Sik;Hong, Jin-Woo;Lee, Hee-Joon;Park, Sang-Koo;Kim, Sun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2951-2957
    • /
    • 2010
  • In solar industry the development of tracking PV power generation devices progresses favorably because of its efficiency, comparing with fixed PV power generation devices. Tracking PV power generation device are not only preserving the amount of solar radiation per unit area but also maximizing the efficiency of solar battery. Therefore accurate and low-priced solar position tracking devices are very important to improve the economical efficiency and lower invest price. This research is concerned with solar position algorithm with uncertainties equal to 1 minute($0.016^{\circ}$) using the mathmatics and astronomg. Proposed algorithm in this paper, lowers the implementation price and improves power generation efficiency. In view of the result so far achieved, maximum error has 30 secend($0.008^{\circ}$). And the solar cell generating system applied by this algorithm showed the gain of the fixed type contrast average 23W(about 18%).

An Efficiency Evaluation of Korea's Electric Power Generation Industries using DEA model (DEA 모형을 활용한 국내 발전회사의 효율성 평가)

  • Koh, Seung-Churl;Sim, Gwang-Sic;Kim, Jae-Yun
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.1
    • /
    • pp.61-77
    • /
    • 2008
  • Data Envelopment Analysis(DEA) is a promising methodology to evaluate the relative efficiency of the decision-making units. We have compared the efficiency of six electric power generation companies in Korea using DEA. The analysis results by input-oriented CCR and BCC models are summarized as follows: first, different results were acquired between using input factors as total capacity of generators and as sub-totals of generator capacity based on primary energy sources. It is the result influenced by input factors which are characterized by the proportion of fixed costs(generating facilities) and variable costs(generation costs for primary energy), Second, the efficiency will be increased if the input factors selected, according to primary energy sources discussed in this research, are used during long-term expansion of electric power capacity plans. It is expected that this approach can give a feedback for management of electric power generation companies.

Development of High Efficiency Gas Turbine/Fuel Cell Hybrid Power Generation System (가스터빈/연료전지 혼합형 고효율 발전시스템 개발)

  • Kim Jae Hwan;Park Poo Min;Yang Soo Seok;Lee Dae Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.243-247
    • /
    • 2005
  • This paper describes an on-going national R&D program for the development of a gas turbine/fuel cell hybrid power generation system and related R&D activities. The final goal of this program is to develop a 200kW-c1ass gas turbine/fuel cell hybrid power generation system and achieve high efficiency over $60\%$ (AC/LHV). In the first phase of the development, a sub-scaled 60kW-class hybrid system based on the 50kW-class microturbine and the 5kW SOFC will be developed for the purpose of concept proof of the hybrid system. Core components such as the microturbine and the SOFC system are being developed and parallel preparation for system integration is being carried out. Before the core components are assembled in the final system. operating characteristics of a hybrid system are investigated from a simulated system where a turbocharger (microturbine simulator) and a modified fuel cell burner test facility (fuel cell simulator) are employed. The 60kW demonstration unit will be built up and operated to provide the valuable information for the preparation of the final full scale 200kW hybrid system.

  • PDF

A Study on the Way to Improve Efficiency of a Waste Heat Recovery System for an Automotive Engine (자동차 엔진용 폐열 회수 시스템의 효율 향상방안에 관한 연구)

  • Cha, Won-Sim;Choi, Kyung-Wook;Kim, Ki-Bum;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.76-81
    • /
    • 2012
  • In recent, there are tremendous efforts to apply co-generation concept in automobile to improve its thermal efficiency. The co-generation is basically a simple Rankine Cycle that uses the waste heat from the engine exhaust and coolant for heat source. In spite of developed nano technology and advance material science, the bulky co-generation system is still a big concern in automotive application. Therefore, the system should be effectively designed not to add much weight on the vehicle, but the capacity of the waste heat recovery should be still large. With such a goal in mind, the system thermal efficiency was investigated in terms of the system operation condition and working fluid. This paper provides a direction for the optimal design of the automotive co-generation system.

A study on improving the surface structure of solar cell and increasing the light absorbing efficiency - Applying the structure of leaves' surface - (태양전지 텍스처 표면구조 개선 및 빛 흡수효율 향상에 관한 연구 - 식물 잎의 표면구조 적용 -)

  • Kim, Taemin;Hong, Joopyo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.38.2-38.2
    • /
    • 2010
  • Biomimetc is a new domain of learning that proposes a solution getting clues from nature. There seems to be a sign of this phenomenon in fields of Renewable Energy. Foe example, Wind power was imitate the whale's fin that was improve efficiency of generating energy. This study focused on the photovoltaic generation as the instance of applying biomimetic. Efficiency is the most important factor in field of Photovoltaic generation. When given solar cell taking the sun light, most important fields of the study are absorb more light and increase the quantity of generation. For improving efficiency, the solar cell were builded up textures of taking a pyramid form, such a surface structure taking a role for remaining the light. This effects do the role as increasing absorbing efficiency. Such phenomenon calls Light Trapping, locking up the light on the surface of solar cell for a long time. Light is a vital factor to plants in the nature. Plants grow up through the photosynthesis that absorbing light for growth and propagation. So, plants make a effort how can absorb more the light in poor surroundings. This study set up a goal that imitates the minute surface structure of plants and applies to the existing solar cells's surface structure, so it can improve the efficiency of absorbing light. We used Light Tools software analyzing geometrical optics to analyze efficiency about new designed textures on the computer. We made a comparison between existing textures and new designed textures. Consequently, new designed textures were advanced efficiency, absorbing rates of light increasing about 7 percent. In comparison with existing and new textures, advancing about 20 percent in the efficient aspect.

  • PDF

Development of Distributed Micro Turbine Co-generation System (분산형 마이크로 터빈 열병합 발전시스템 개발)

  • Kwon, Gi-Hun;Kim, Seung-Woo;Lee, See Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.320-327
    • /
    • 2002
  • In concert with the growing emphasis placed on distributed power generation there will be a need, in the first decade of the 21th century, for a compact thermal energy system capable of providing the total energy needs of individual homes. A natural gas fueled co-generation micro-turbine with ultra low emission will meet this need. Market opportunities for a distributed micro turbine co-generation system are projected to increase dramatically. In this paper, It was determined that with current state of art component performance levels, metrallic materials, thermal efficiency goal of $28\%$ at sea level standard day conditions are attainable. Higher overall thermal efficiency of $78\%$ is attainable with micro-turbine combined with exhaust fired boilers.

  • PDF

An Implementation of Automatic Mesh Generation Algorithm in Boundary Element Method (BEM에서의 자동요소분할 알고리즘의 구현)

  • 오환섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.65-71
    • /
    • 1997
  • The automation of mesh generation in BEM is very important in numerical analysis field for the time and efficiency. In order to this problem, program and algorithm to achive the purpose of making input data and automation of mesh generation based in Expert System are developed in this study. This program has the function of rotating and zooming. The stress intensity factor which is a criteria of fracture mechanics is calculated and compared with other results to prove efficiency and availability of the program in result.

  • PDF

Development of Direct Drive Motor for Next Generation Train (차세대전동차용 직접구동전동기 개발)

  • Kim, Gil-Dong;Lee, Han-Min;Lee, Jang-Mu;Oh, Se-Chan;Joung, Eui-Jin
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.688-694
    • /
    • 2009
  • As a drive system for next generation train, we have been making research and development of a direct drive traction motor system without the conventional reduction gear. This traction motor is expected to have many advantages such as low noise, reduced maintenance, and energy saving. Due to the demand for high-output motors in the limited space between the wheels, open-ventilating traction motors with gear box have been widely used for many years. However, a conventional open-ventilating traction motor is necessary periodical disassembly to remove the accumulated dust from open-air ventilation. Reducing this burden, as well as increasing energy efficiency and reducing noise, would benefit the next generation of traction motors. To address these needs, KRRI have been developing a fully enclosed type direct drive motor(DDM) with high-efficiency permanent magnet for the next generation train.

  • PDF

Insolation Modeling Using by GIS (GIS기법을 이용한 일사량 모델링)

  • Kim, Byung-Woo;Kang, In-Joon;Kim, Sang-Suk;Kwak, Jae-Ha
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.359-361
    • /
    • 2010
  • This research is thing about location choice of solar power generation equipment to increase efficiency of solar power generation equipment. In the case of current solar power generation equipment, location of large scale solar power generation equipment facilities choice or, have localized in small scale equipment by individual. This research uses various climatic elements of small scale area for efficient location choice of solar power generation facilities and quantity of solar radiation did back-tracking.

  • PDF

Effects of Different Coal Type on Gasification Characteristics (Pilot 규모 석탄 가스화기에서의 탄종별 가스화성능 특성)

  • Park, Se-Ik;Lee, Joon-Won;Seo, Hea-Kyung
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.5
    • /
    • pp.470-477
    • /
    • 2010
  • The IGCC (Integrated gasification combined cycle) is known for one of the highest efficiency and the lowest emitting coal fueled power generating technologies. As the core technology of this system is the gasifier to make the efficiency and the continuous operation time increase, the research about different coal's gasification has been conducted. Our research group had set-up the coal gasifier for the pilot test to study the effect of different coals-Shenhua and Adaro coal- on gasification characteristics. Gasification conditions like temperature and pressure were controlled at a fixed condition and coal feed rate was also controlled 30 kg/h to retain the constant experimental condition. Through this study we found effects of coal composition and $O_2$/coal ratio on the cold gas efficiency, carbon conversion rate. The compounds of coal like carbon and ash make the performance of gasifier change. And carbon conversion rate was decreased with reduced $O_2$/coal ratio. The optical $O_2$/coal ratio is 0.8 for the highest cold gas efficiency approximately. At those operating conditions, the higher coal has the C/H ratio, the lower syn-gas has the $H_2$/CO ratio.