• Title/Summary/Keyword: generated voltage

Search Result 1,370, Processing Time 0.036 seconds

Monitoring trafficking and expression of hemagglutinin-tagged transient receptor potential melastatin 4 channel in mammalian cells

  • Eun Mi Hwang;Bo Hyun Lee;Eun Hye Byun;Soomin Lee;Dawon Kang;Dong Kun Lee;Min Seok Song;Seong-Geun Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.417-426
    • /
    • 2023
  • The TRPM4 gene encodes a Ca2+-activated monovalent cation channel called transient receptor potential melastatin 4 (TRPM4) that is expressed in various tissues. Dysregulation or abnormal expression of TRPM4 has been linked to a range of diseases. We introduced the hemagglutinin (HA) tag into the extracellular S6 loop of TRPM4, resulting in an HA-tagged version called TRPM4-HA. This TRPM4-HA was developed to investigate the purification, localization, and function of TRPM4 in different physiological and pathological conditions. TRPM4-HA was successfully expressed in the intact cell membrane and exhibited similar electrophysiological properties, such as the current-voltage relationship, rapid desensitization, and current size, compared to the wild-type TRPM4. The presence of the TRPM4 inhibitor 9-phenanthrol did not affect these properties. Furthermore, a wound-healing assay showed that TRPM4-HA induced cell proliferation and migration, similar to the native TRPM4. Co-expression of protein tyrosine phosphatase, non-receptor type 6 (PTPN6 or SHP1) with TRPM4-HA led to the translocation of TRPM4-HA to the cytosol. To investigate the interaction between PTPN6 and tyrosine residues of TRPM4 in enhancing channel activity, we generated four mutants in which tyrosine (Y) residues were substituted with phenylalanine (F) at the N-terminus of TRPM4. The YF mutants displayed properties and functions similar to TRPM4-HA, except for the Y256F mutant, which showed resistance to 9-phenanthrol, suggesting that Y256 may be involved in the binding site for 9-phenanthrol. Overall, the creation of HA-tagged TRPM4 provides researchers with a valuable tool to study the role of TRPM4 in different conditions and its potential interactions with other proteins, such as PTPN6.

Development and Characterization of Hafnium-Doped BaTiO3 Nanoparticle-Based Flexible Piezoelectric Devices (Hf 도핑된 BaTiO3 나노입자 기반의 플렉서블 압전 소자 개발 및 특성평가)

  • HakSu Jang;Hyeon Jun Park;Gwang Hyeon Kim;Gyoung-Ja Lee;Jae-Hoon Ji;Donghun Lee;Young Hwa Jung;Min-Ku Lee;Changyeon Baek;Kwi-Il Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • Energy harvesting technology that converts the wasted energy resources into electrical energy is emerging as a semipermanent power source for self-powered electronics and wireless low-power sensor systems. Among the various energy conversion techniques, flexible piezoelectric energy harvesters (f-PEHs), using materials with piezoelectric effects, have attracted significant interest because they can harvest a small mechanical energy into electrical signals without constraints of time and space in various environments. In this study, we used a flexible piezoelectric composite film fabricated by dispersing BaHfxTi(1-x)O3 (x = 0, 0.01, 0.05, 0.1) piezoelectric powders inside a polymeric matrix to facilitate f-PEHs. The fabricated f-PEH with optimal Hf contents (x = 0.05) generated a maximum output voltage of 0.95 V and current signal of 130 nA with stable electrical/mechanical disabilities under periodically bending deformations. In addition, we demonstrated a cantilever-type f-PEH and investigated its potential as a sensor by characterizing the output performance under mechanical vibrations at various frequencies. This study provides the breakthrough for realizing self-powered energy harvesting and sensing systems by adopting the lead-free piezoelectric composites under vibrational environments.

A Non-Calibrated 2x Interleaved 10b 120MS/s Pipeline SAR ADC with Minimized Channel Offset Mismatch (보정기법 없이 채널 간 오프셋 부정합을 최소화한 2x Interleaved 10비트 120MS/s 파이프라인 SAR ADC)

  • Cho, Young-Sae;Shim, Hyun-Sun;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.63-73
    • /
    • 2015
  • This work proposes a 2-channel time-interleaved (T-I) 10b 120MS/s pipeline SAR ADC minimizing offset mismatch between channels without any calibration scheme. The proposed ADC employs a 2-channel SAR and T-I topology based on a 2-step pipeline ADC with 4b and 7b in the first and second stage for high conversion rate and low power consumption. Analog circuits such as comparator and residue amplifier are shared between channels to minimize power consumption, chip area, and offset mismatch which limits the ADC linearity in the conventional T-I architecture, without any calibration scheme. The TSPC D flip-flop with a short propagation delay and a small number of transistors is used in the SAR logic instead of the conventional static D flip-flop to achieve high-speed SAR operation as well as low power consumption and chip area. Three separate reference voltage drivers for 4b SAR, 7b SAR circuits and a single residue amplifier prevent undesirable disturbance among the reference voltages due to each different switching operation and minimize gain mismatch between channels. High-frequency clocks with a controllable duty cycle are generated on chip to eliminate the need of external complicated high-frequency clocks for SAR operation. The prototype ADC in a 45nm CMOS technology demonstrates a measured DNL and INL within 0.69LSB and 0.77LSB, with a maximum SNDR and SFDR of 50.9dB and 59.7dB at 120MS/s, respectively. The proposed ADC occupies an active die area of 0.36mm2 and consumes 8.8mW at a 1.1V supply voltage.

Exact Solutions of Plasma Diffusion in a Fine Tube Positive Column Discharge (세관 양광주 방전에서 플라즈마 확산의 완전 해)

  • Jin, D.J.;Jeong, J.M.;Kim, J.H.;Hwang, H.C.;Chung, J.Y.;Cho, Y.H.;Lim, H.K.;Koo, J.H.;Choi, E.H.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.36-44
    • /
    • 2010
  • The ambipolar diffusion equation has been solved in a fine-tube lamp of a few mm in diameter. In the diffusion of radial direction, the plasma diffuses and vanishes away at the glass wall by recombination with the characteristic time of plasma loss is given by $\tau_r\;=\;(r_0/2.4)^2/D_a$. With the radius $r_0{\sim}1\;mm$ and the ambipolar diffusion coefficient $D_a{\sim}0.01\;m^2/s$, the vanishing time is calculated $\tau_r{\sim}10\;{\mu}s$ which corresponds to the least value of frequency 30 kHz for the sustaining the plasma in the operation of high voltage AC-power. In the diffusion of longitudinal z-direction, a high density plasma generated at the area of a high voltage electrode, diffuses into the positive column with the characteristic time $\tau_z{\sim}0.1\;s$. The plasma diffusion velocity at the boundary of high density plasma is $u_D{\sim}10^2\;m/s$ at the time $t{\sim}10^{-6}$ s and the diffusion velocity becomes slow as $u_D{\sim}1\;m/s$ at $t{\sim}10^{-3}\;s$. Therefore, for the long lamp of 1 m, it takes about several seconds for the high density plasma at the area of electrode to diffuse through the whole positive column space.

Sterilization of Neurospora Crassa by Noncontacted Low Temperature Atmospheric Pressure Surface Discharged Plasma with Dielectric Barrier Structure (유전체장벽 방전구조의 비접촉식 저온 대기압 면방전 플라즈마를 이용한 빵곰팡이의 살균효과)

  • Ryu, Young Hyo;Uhm, Han Sup;Park, Gyung Soon;Choi, Eun Ha
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.55-65
    • /
    • 2013
  • Sterilization of Neurospora crassa has been investigated in this research by using a surface air plasma with dielectric barrier discharged (DBD) structure under atmospheric pressure. The sinusoidal alternating current has been used in this experiment with discharge voltage of 1.4~2.3 kV. The phase difference between the voltage and current signals are found to be almost 80 degree due to the capacitive property of dielectric barrier. Temperature on the biomaterials has been minimized by radiating the heat with the air cooling system. It is noted that the substrate temperature remains under 37 degree for plasma exposure time of 10 minutes with operation of cooler system. It is found that the ozone, $O_3$, has been measured to be about 25~30 ppm within 1 cm region and to be about 5 ppm at the 150 cm downstream region away from the suface plasma. It is also noted that the nitric oxide, NO, and nitric dioxide, $NO_2$, are not nearly detected. Germination rate and mitochodrial activity of Neurospora crassa immersed in the deionized water have been found to be drastically decreased as the plasma treatment time and its electrical power are increased in this experiment. Here, the mitochondrial activity has been analyzed by MTT (3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. However, sterilization of Neurospora crassa immersed in the Vogel's minimal media has been found to be low by plasma treatment, which is caused by surrounding background solution. This research shows the sterilization possibility of Neurospora crassa by using the noncontated surface DBD plasma, which is different from the plasma jet. This is mainly attibuted to the reactive species generated by the surface plasma, since they play a major role for inhibition of micobes such as Neurospora crassa.

An Exploratory Study on the Structure of Fabric of Increasing Triboelectric Energy Harvesting by Applying Three-dimensional Embroidery Technique (입체 자수 기법을 적용한 마찰 에너지 수확 증대형 직물 구조의 탐색)

  • Yang, Jin-Hee;Cho, Hyun-Seung;Kim, Min-Ook;Kim, Jong-Baeg;Kim, Shin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.141-150
    • /
    • 2018
  • The purpose of this study is to investigate three-dimensional embroidery techniques for creating conductive fabric materials. Such techniques can increase the efficiency of energy harvesting by increasing the fabric's area during rubbing and brushing. We also investigate the fabric structure of the triboelectric energy harvesting type. Two experiments were conducted for this purpose. In Experiment I, the three-dimensional embroidery technique(satin technique, file technique) and the conductive fabric material(copper-based MPF, nickel-based MPF) were selected as the main variables affecting the efficiency of triboelectric energy harvesting from the human body. Four samples were fabricated according to a combination of two variables. In Experiment II, the harvesters fabricated by the three-dimensional embroidery method showing the highest efficiency were subjected to brushing processes and the voltages generated after processing were analyzed. As a result, in both conductive fabric materials, the pile embroidery fabric structure showed a higher efficiency than the satin structure. These results show the triboelectric energy harvesting principle, which is proportional to the charge density and the generated voltage. It can be seen that the structure of pile embroidery fabric with a large friction area is advantageous for increasing efficiency compared to satin embroidery-fabric structure with a relatively small friction area. Moreover, the energy harvesting efficiency after brushing was higher than that before processing due to the increased friction area, and it was found that the brushing method is advantageous for increasing the triboelectric-energy harvest.

The Study of Affecting Image Quality according to forward Scattering Dose used Additional Filter in Diagnostic Imaging System (부가필터 사용 시 전방 산란선량에 따른 화질 영향에 대한 연구)

  • Choi, Il-Hong;Kim, Kyo-Tae;Heo, Ye-Ji;Park, Hyong-Hu;Kang, Sang-Sik;Noh, Si-Cheol;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.597-602
    • /
    • 2016
  • Recent clinical field utilizes the aluminium filter in order to reduce the low-energy photons. However, the usage of the filter can cause adverse effect on the image quality because of the scattered dose that is generated by X-ray hardening phenomenon. Further, usage of filter with improper thickness can be a reason of dose creep phenomenon where unnecessary exposure is generated towards the patient. In this study, the author evaluated the RMS and the RSD analysis in order to have a quantitative evaluation for the effect of forward scattering dose by the filter on the image. as a result of the study, the FSR and the RSD was increased together with the increasing of thickness of the filter. In this study the RSD means the standard deviation of the mean value is relatively size. It can be understood that the signal-to-noise ratio decreases when the average value is taken as a signal and the standard deviation is judged as a noise. The signal-to-noise ratio can understanding as index of resolution at image. Based on these findings, it was quantitatively verified that there is a correlation of the image quality with the FSR by using an additional filter. The results, a 2.5 mmAl which is as recommended by NCRP in the tube voltage of 70 kVp or more showed the 14.6% on the RSD when the filter was not in used. these results are considered able to be utilized as basic data for the study about the filter to improve the quality of the image.

Study of the CatcherTM Couch's Usefulness (토모치료기 CatcherTM Couch의 유용성에 대한 고찰)

  • Um, Ki Cheon;Lee, Chung Hwan;Jeon, Soo Dong;Song, Heung Kwon;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • Purpose: Recently, A Catcher was added to prevent sagging in Radixact® X9. In this study, We quantitatively compared general couch of Tomo-HDA® with catcher couch of Radixact® X9 using the human phantom and evaluated usefulness of catcher. Materials and methods: We used rando phantom for phantom study and set the each iso-center of head and neck region and Pelvis region for region parameter. Furthermore, We used hand made low melting point alloys for weight parameter. MVCT(Mega Voltage Computed Tomography) images were acquired for vertical error and rotation(pitch) error measurement increasing weight(A: 15kg, A+B: 30kg, A+B+C: 45kg). We selected 120 patients who has been treated using Tomotherpy machine for patient study. 60 patients has been treated in Tomo-HDA® and the other 60 patients treated in Radixact® X9. In the patient study methods, vertical error and rotation(pitch) error was measured for mean value calculation using MVCT images acquired on first day of radiation therapy. Result: Result of phantom study, Vertical error and rotation(pitch) error was increased proportionally increased as the weight increases in general couch of Tomo-HDA®. each maximum value was 7.52mm, 0.38° in head and neck region and 11.94mm, 0.92° in pelvis region. However, We could confirm that there was stable error range(0.02~0.1mm, 0~0.04°) in Catcher couch of Radixact®. Result of patient study, The head and neck region was measured 4.79mm 0.33° lower, and the pelvis region was measured 7.66mm, 0.22° lower in Catcher couch of Radixact® X9. Conclusion: In this study, Vertical error and rotation(pitch) error was proportionally increased as the weight increases in general couch of Tomo-HDA®. Especially, The pelvis region error was more increased than the head and neck region error. However, Vertical error and rotation(pitch) error was regularly generated regardless of weight or regions in CatcherTM couch of Radixact® X9 that this study's purpose. In conclusion, CatcherTM couch of Radixact® X9 can minimize mechanical error that couch sagging. Furthermore, The pelvis region is more efficiency than head and neck region. In radiation therapy using Tomotherapy machine, it is regarded that may contribute to minimizing unadjusted pitch error due to characters of Tomotherapy.

The Study of Influence on Reducing Exposure Dose According to the Applied Flat-panel CT in Extremity Bone SPECT/CT (상·하지 뼈 SEPCT/CT 검사에서 평판형 CT의 피폭저감 영향에 관한 고찰)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.15-24
    • /
    • 2013
  • Purpose: With the demand of SPECT/CT increasing, the interest in complex diagnostic information of CT is rising along with the expansion of various studies on potential performance value. But the study on reduction of exposure dose generated by CT is not being conducted enough. Therefore, in this study, the goal is to identify how much dose reduction exists when performing the extremity bone SPECT/CT using the flat-panel CT. Materials and Methods: The extremity bone SPECT/CT was performed with two equipments -BrightView XCT (Philips Healthcare, Cleveland, USA) and Brilliance 16 CT (Philips Healthcare, Cleveland, USA)-to identify the exposed dose and image quality resulted by changing scan parameter (mAs) applying for both equipment respectively. The noise value of image and spatial resolution were measured with AAPM CT phantom. Tube voltage (kVp) was fixed to 120 kVp, tube current (mAs) calculated at different mA (20, 30, 40, 50, 60, 70, 80) was applied to both equipments respectively. DLP (dose length product) were calculated at the same distance at respective mAs. Also, we acquired images and % contrast with NEMA IEC body phantom to confirm the effect on image. The output of statistics was analyzed by SPSS ver.18. Results: Regarding AAPM phantom, the noise decreased as the tube current (mAs) increased and flat-panel had less noise than Helical CT. This difference increased at lower dose exposure. As to the evaluation of spatial resolution, we can differentiate the space up to 0.75 mm with both equipments. With scan parameter (mA) growing, the value of DLP increased up to 54-216 mGy cm at flat-panel CT and up to 177-709 mGy cm at Helical CT. Regarding NEMA IEC body phantom, same sphere with varied parameter (mA) shows that similar results. Conclusion: There is no significant differences of image quality in both flat-panel and Helical CT when the scan parameter (mA) is changed respectively. Moreover, we can identify the reduction of exposure dose and confirm %contrast analysis value with maintaining image quality. Therefore, at the extremity bone SPECT/CT requiring high spital resolution without the wide ROI, the flat-panel CT is considered to be more useful and it expected to result in the similar image quality with lower exposure dose compared to Helical CT. Additionally, through this study, we expect to help the reduction of the unnecessary exposure dose.

  • PDF

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF