• Title/Summary/Keyword: generalized second Appell function in two variables

Search Result 3, Processing Time 0.028 seconds

EXTENSIONS OF MULTIPLE LAURICELLA AND HUMBERT'S CONFLUENT HYPERGEOMETRIC FUNCTIONS THROUGH A HIGHLY GENERALIZED POCHHAMMER SYMBOL AND THEIR RELATED PROPERTIES

  • Ritu Agarwal;Junesang Choi;Naveen Kumar;Rakesh K. Parmar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.575-591
    • /
    • 2023
  • Motivated by several generalizations of the Pochhammer symbol and their associated families of hypergeometric functions and hypergeometric polynomials, by choosing to use a very generalized Pochhammer symbol, we aim to introduce certain extensions of the generalized Lauricella function F(n)A and the Humbert's confluent hypergeometric function Ψ(n) of n variables with, as their respective particular cases, the second Appell hypergeometric function F2 and the generalized Humbert's confluent hypergeometric functions Ψ2 and investigate their several properties including, for example, various integral representations, finite summation formulas with an s-fold sum and integral representations involving the Laguerre polynomials, the incomplete gamma functions, and the Bessel and modified Bessel functions. Also, pertinent links between the major identities discussed in this article and different (existing or novel) findings are revealed.

REMARKS ON A SUMMATION FORMULA FOR THREE-VARIABLES HYPERGEOMETRIC FUNCTION $X_8$ AND CERTAIN HYPERGEOMETRIC TRANSFORMATIONS

  • Choi, June-Sang;Rathie, Arjun K.;Harsh, H.
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.481-486
    • /
    • 2009
  • The first object of this note is to show that a summation formula due to Padmanabham for three-variables hypergeometric function $X_8$ introduced by Exton can be proved in a different (from Padmanabham's and his observation) yet, in a sense, conventional method, which has been employed in obtaining a variety of identities associated with hypergeometric series. The second purpose is to point out that one of two seemingly new hypergeometric identities due to Exton was already recorded and the other one is easily derivable from the first one. A corrected and a little more compact form of a general transform involving hypergeometric functions due to Exton is also given.

SUMMATION FORMULAS DERIVED FROM THE SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES HC

  • Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.185-191
    • /
    • 2010
  • Srivastava noticed the existence of three additional complete triple hypergeometric functions $H_A$, $H_B$ and $H_C$ of the second order in the course of an extensive investigation of Lauricella's fourteen hypergeometric functions of three variables. In 2004, Rathie and Kim obtained four summation formulas containing a large number of very interesting reducible cases of Srivastava's triple hypergeometric series $H_A$ and $H_C$. Here we are also aiming at presenting two unified summation formulas (actually, including 62 ones) for some reducible cases of Srivastava's $H_C$ with the help of generalized Dixon's theorem and generalized Whipple's theorem on the sum of a $_3F_2$ obtained earlier by Lavoie et al.. Some special cases of our results are also considered.