• Title/Summary/Keyword: generalized projection

Search Result 80, Processing Time 0.033 seconds

The Efficient Feature Extraction of Handwritten Numerals in GLVQ Clustering Network (GLVQ클러스터링을 위한 필기체 숫자의 효율적인 특징 추출 방법)

  • Jeon, Jong-Won;Min, Jun-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.995-1001
    • /
    • 1995
  • The structure of a typical pattern recognition consists a pre-processing, a feature extraction(algorithm) and classification or recognition. In classification, when widely varying patterns exist in same category, we need the clustering which organize the similar patterns. Clustering algorithm is two approaches. Firs, statistical approaches which are k-means, ISODATA algorithm. Second, neural network approach which is T. Kohonen's LVQ(Learning Vector Quantization). Nikhil R. Palet al proposed the GLVQ(Generalized LVQ, 1993). This paper suggest the efficient feature extraction methods of handwritten numerals in GLVQ clustering network. We use the handwritten numeral data from 21's authors(ie, 200 patterns) and compare the proportion of misclassified patterns for each feature extraction methods. As results, when we use the projection combination method, the classification ratio is 98.5%.

  • PDF

Optical flow of heart images by image-flow conservation equation and functional expansion (영상유체보존식과 함수전개법에 의한 심장영상의 광류)

  • Kim, Jin-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1341-1347
    • /
    • 2007
  • The displacement field (Optical flow) has been calculated by bottom-up approaches based on local processing. In contrast with them, in this paper, a top-down approach based on expanding in turn from the lowest order mode the whole motion in an image pair of sequential images is proposed. The intensity of medical images usually represents a quantity which is conserved during the motion. Hence sequential images are ideally related by a coordinate transformation. The displacement field can be determined from the generalized moments of the two images. The equations which transform arbitrary generalized moments from a source image to a target image are expressed as a function of the displacement field. The appareent displacement field is then computed iteratively by a projection method which utilizes the functional derivatives of the linearized moment equations. This method is demonstrated using a pair of sequential heart images. For comparative evaluation, we applied Horn and Schunck's method, a standard multigrid method, and our proposed algorithm to sequential image.

Implicit Numerical Integration of Two-surface Plasticity Model for Coarse-grained Soils (Implicit 수치적분 방법을 이용한 조립토에 관한 구성방정식의 수행)

  • Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.45-59
    • /
    • 2006
  • The successful performance of any numerical geotechnical simulation depends on the accuracy and efficiency of the numerical implementation of constitutive model used to simulate the stress-strain (constitutive) response of the soil. The corner stone of the numerical implementation of constitutive models is the numerical integration of the incremental form of soil-plasticity constitutive equations over a discrete sequence of time steps. In this paper a well known two-surface soil plasticity model is implemented using a generalized implicit return mapping algorithm to arbitrary convex yield surfaces referred to as the Closest-Point-Projection method (CPPM). The two-surface model describes the nonlinear behavior of coarse-grained materials by incorporating a bounding surface concept together with isotropic and kinematic hardening as well as fabric formulation to account for the effect of fabric formation on the unloading response. In the course of investigating the performance of the CPPM integration method, it is proven that the algorithm is an accurate, robust, and efficient integration technique useful in finite element contexts. It is also shown that the algorithm produces a consistent tangent operator $\frac{d\sigma}{d\varepsilon}$ during the iterative process with quadratic convergence rate of the global iteration process.

Application of the Neural Networks Models for the Daily Precipitation Downscaling (일 강우량 Downscaling을 위한 신경망모형의 적용)

  • Kim, Seong-Won;Kyoung, Min-Soo;Kim, Byung-Sik;Kim, Hyung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.125-128
    • /
    • 2009
  • The research of climate change impact in hydrometeorology often relies on climate change information. In this paper, neural networks models such as generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM) are proposed statistical downscaling of the daily precipitation. The input nodes of neural networks models consist of the atmospheric meteorology and the atmospheric pressure data for 4 grid points including $127.5^{\circ}E/37.5^{\circ}N$, $127.5^{\circ}E/35^{\circ}N$, $125^{\circ}E/37.5^{\circ}N$ and $125^{\circ}E/35^{\circ}N$, respectively. The output node of neural networks models consist of the daily precipitation data for Seoul station. For the performances of the neural networks models, they are composed of training and test performances, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM performances for the downscaling of the daily precipitation data. We should, therefore, construct the credible daily precipitation data for Seoul station using statistical downscaling method. The proposed methods can be applied to future climate prediction/projection using the various climate change scenarios such as GCMs and RCMs.

  • PDF

Evaluation of Deterioration on Steel Bridges Based on Bridge Condition Ratings

  • Park, Chan-Hee
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.166-171
    • /
    • 2004
  • Recent developments in Bridge Management Systems (BMS) and in Life-Cycle Cost (LCC) of bridges, have raised the need for evaluation procedure of future condition (Deterioration) of a bridge. Predicting future deterioration is not an easy task due to limited past data to extrapolate from and also due to difficulty in measuring actual deterioration such as section loss of steel on an actual steel bridge. Also, increase in live load and reduction of resistance are random variables, thus a probabilistic approach should be adopted for determining the future deterioration. Due to difficulties in evaluation of future deterioration on steel bridges, accepting uncertainties within a reasonable error, a deterministic procedure using bridge condition rating can be a useful tool for projection of future condition of bridges to identify repair and maintenance needs. The object of this paper is to determine applicability of evaluating deterioration of steel bridge components based on Bridge condition ratings. Bridge condition ratings of bridge components show wide variation for bridges of same age and does not directly correlate well with the age of the bridge and/or deterioration of the bridge. High uncertainty can be reduced by breaking down the rating and by sensitivity analysis. From refined condition rating data, generalized deterioration profile of structures based on age can be derived. Examples are shown for sample bridges in USA. Approximately, 3,000 short to medium span steel bridges were listed in the inventory database. Results show wide variation of rating factors but by subdividing the Bridge condition ratings for various categories general deterioration profiles of steel bridges can be determined.

Non-stationary Frequency Analysis with Climate Variability using Conditional Generalized Extreme Value Distribution (기후변동을 고려한 조건부 GEV 분포를 이용한 비정상성 빈도분석)

  • Kim, Byung-Sik;Lee, Jung-Ki;Kim, Hung-Soo;Lee, Jin-Won
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.499-514
    • /
    • 2011
  • An underlying assumption of traditional hydrologic frequency analysis is that climate, and hence the frequency of hydrologic events, is stationary, or unchanging over time. Under stationary conditions, the distribution of the variable of interest is invariant to temporal translation. Water resources infrastructure planning and design, such as dams, levees, canals, bridges, and culverts, relies on an understanding of past conditions and projection of future conditions. But, Water managers have always known our world is inherently non-stationary, and they routinely deal with this in management and planning. The aim of this paper is to give a brief introduction to non-stationary extreme value analysis methods. In this paper, a non-stationary hydrologic frequency analysis approach is introduced in order to determine probability rainfall consider changing climate. The non-stationary statistical approach is based on the conditional Generalized Extreme Value(GEV) distribution and Maximum Likelihood parameter estimation. This method are applied to the annual maximum 24 hours-rainfall. The results show that the non-stationary GEV approach is suitable for determining probability rainfall for changing climate, sucha sa trend, Moreover, Non-stationary frequency analyzed using SOI(Southern Oscillation Index) of ENSO(El Nino Southern Oscillation).

Analytical Formula for the Equivalent Mohr-Coulomb Strength Parameters Best-fitting the Generalized Hoek-Brown Criterion in an Arbitrary Range of Minor Principal Stress (임의 최소주응력 구간에서 일반화된 Hoek-Brown 파괴기준식을 최적 근사하는 등가 Mohr-Coulomb 강도정수 계산식)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.172-183
    • /
    • 2019
  • The generalized Hoek-Brown (GHB) failure criterion developed by Hoek et al. (2002) is a nonlinear function which defines a stress condition at failure of rock mass. The relevant strength parameter values are systematically determined using the GSI value. Since GSI index is a value quantifying the condition of in-situ rock mass, the GHB criterion is a practical failure condition which can take into the consideration of in-situ rock mass quality. Considering that most rock mechanics engineers are familiar with the linear Mohr-Coulomb criterion and that many rock engineering softwares incorporate Mohr-Coulomb criterion, the equations for the equivalent friction angle and cohesion were also proposed along with the release of the GHB criterion. The proposed equations, however, fix the lower limit of the minor principal stress range, where the linear best-fitting is performed, with the tensile strength of the rock mass. Therefore, if the tensile stress is not expected in the domain of analysis, the calculated equivalent friction angle and cohesion based on the equations in Hoek et al. (2002) could be less accurate. In order to overcome this disadvantage of the existing equations for equivalent friction angle and cohesion, this study proposes the analytical formula which can calculate optimal equivalent friction angle and cohesion in any minor principal stress interval, and verified the accuracy of the derived formula.

Mathematician Taylor's Linear Perspective Theory and Painter Kirby's Handbook (수학자 테일러의 선 원근법과 화가 커비의 해설서)

  • Cho, Eun-Jung
    • The Journal of Art Theory & Practice
    • /
    • no.7
    • /
    • pp.165-188
    • /
    • 2009
  • In the development of linear perspective, Brook Taylor's theory has achieved a special position. With his method described in Linear Perspective(1715) and New Principles of Linear Perspective(1719), the subject of linear perspective became a generalized and abstract theory rather than a practical method for painters. He is known to be the first who used the term 'vanishing point'. Although a similar concept has been used form the early stage of Renaissance linear perspective, he developed a new method of British perspective technique of measure points based on the concept of 'vanishing points'. In the 15th and 16th century linear perspective, pictorial space is considered as independent space detached from the outer world. Albertian method of linear perspective is to construct a pavement on the picture in accordance with the centric point where the centric ray of the visual pyramid strikes the picture plane. Comparison to this traditional method, Taylor established the concent of a vanishing point (and a vanishing line), namely, the point (and the line) where a line (and a plane) through the eye point parallel to the considered line (and the plane) meets the picture plane. In the traditional situation like in Albertian method, the picture plane was assumed to be vertical and the center of the picture usually corresponded with the vanishing point. On the other hand, Taylor emphasized the role of vanishing points, and as a result, his method entered the domain of projective geometry rather than Euclidean geometry. For Taylor's theory was highly abstract and difficult to apply for the practitioners, there appeared many perspective treatises based on his theory in England since 1740s. Joshua Kirby's Dr. Brook Taylor's Method of Perspective Made Easy, Both in Theory and Practice(1754) was one of the most popular treatises among these posterior writings. As a well-known painter of the 18th century English society and perspective professor of the St. Martin's Lane Academy, Kirby tried to bridge the gap between the practice of the artists and the mathematical theory of Taylor. Trying to ease the common readers into Taylor's method, Kirby somehow abbreviated and even omitted several crucial parts of Taylor's ideas, especially concerning to the inverse problems of perspective projection. Taylor's theory and Kirby's handbook reveal us that the development of linear perspective in European society entered a transitional phase in the 18th century. In the European tradition, linear perspective means a representational system to indicated the three-dimensional nature of space and the image of objects on the two-dimensional surface, using the central projection method. However, Taylor and following scholars converted linear perspective as a complete mathematical and abstract theory. Such a development was also due to concern and interest of contemporary artists toward new visions of infinite space and kaleidoscopic phenomena of visual perception.

  • PDF

Numerical experiment on driftwood dynamics considering rootwad effect and wood collision

  • Kang, Taeun;Kimura, Ichiro;Onda, Shinichiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.267-267
    • /
    • 2019
  • Driftwood is one of serious problems in a river environment. In several countries, such as Indonesia, Japan, and Italy, the driftwood frequently appears in a river basin, and it can alter the channel bed, flow configuration by wood deposition and jam formation. Therefore, the studies related to driftwood have been actively conducted by many researchers to understand the mechanism of driftwood dynamics. In particular, wood motion by collision is one of the difficult issues in the numerical simulation because the calculation for wood collision requires significantly expensive calculation time due to small time step. Thus, this study conducted the numerical simulation in consideration of the wood motion by water flow and wood collision to understand the wood dynamics in terms of computation. We used the 2D (two-dimensional) depth-averaged velocity model, Nays2DH, which is a Eulerian model to calculate the water flow on the generalized coordinate. A Lagrangian type driftwood model, which expresses the driftwood as connected sphere shape particles, was employed to Nays2DH. In addition, the present study considered root wad effect by using larger diameter for a particle at a head of driftwood. An anisotropic bed friction was considered for the sliding motion dependent on stemwise, streamwise and motion directions. We particularly considered changeable draft at each particle and projection area by an angle between stemwise and flow directions to precisely reproduce the wood motions. The simulation results were compared with experimental results to verify the model. As a result, the simulation results showed good agreement with experimental results. Through this study, it would be expected that this model is a useful tool to predict the driftwood effect in the river flow.

  • PDF

Assessment of deformations and internal forces in the suspension bridge under eccentric live loads: Analytical algorithm

  • Zhang, Wenming;Lu, Xiaofan;Chang, Jiaqi;Tian, Genmin;Xia, Lianfeng
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.749-765
    • /
    • 2021
  • Suspension bridges bear large eccentric live loads in rush hours when most vehicles travel in one direction on the left or right side of the bridge. With the increasing number and weight of vehicles and the girder widening, the eccentric live load effect on the bridge behavior, including bending and distortion of the main girder, gets more pronounced, even jeopardizing bridge safety. This study proposes an analytical algorithm based on multi-catenary theory for predicting the suspension bridge responses to eccentric live load via the nonlinear generalized reduced gradient method. A set of governing equations is derived to solve the following unknown values: the girder rigid-body displacement in the longitudinal direction; the horizontal projection lengths of main cable's segments; the parameters of catenary equations and horizontal forces of the side span cable segments and the leftmost segments of middle span cables; the suspender tensions and the bearing reactions. Then girder's responses, including rigid-body displacement in the longitudinal direction, deflections, and torsion angles; suspenders' responses, including the suspender tensions and the hanging point displacements; main cables' responses, including the horizontal forces of each segment; and the longitudinal displacement of the pylons' tower top under eccentric load can be calculated. The response of an exemplar suspension bridge with three spans of 168, 548, and 168 m is calculated by the proposed analytical method and the finite element method in two eccentric live load cases, and their results prove the former's feasibility. The nonuniform distribution of the live load in the lateral direction is shown to impose a greater threat to suspension bridge safety than that in the longitudinal direction, while some other specific features revealed by the proposed method are discussed in detail.