• Title/Summary/Keyword: generalized metric space

Search Result 108, Processing Time 0.024 seconds

COMMON FIXED POINT THEOREMS FOR GENERALIZED 𝜓∫𝜑-WEAKLY CONTRACTIVE MAPPINGS IN G-METRIC SPACES

  • Kim, Jong Kyu;Kumar, Manoj;Bhardwaj, Preeti;Imdad, Mohammad
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.565-580
    • /
    • 2021
  • In this paper, first of all we prove a fixed point theorem for 𝜓∫𝜑-weakly contractive mapping. Next, we prove some common fixed point theorems for a pair of weakly compatible self maps along with E.A. property and (CLR) property. An example is also given to support our results.

HUGE COUPLED COINCIDENCE POINT THEOREM FOR GENERALIZED COMPATIBLE PAIR OF MAPPINGS WITH APPLICATIONS

  • DESHPANDE, BHAVANA;HANDA, AMRISH
    • The Pure and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.73-96
    • /
    • 2016
  • We establish a coupled coincidence point theorem for generalized com-patible pair of mappings under generalized nonlinear contraction on a partially or-dered metric space. We also deduce certain coupled fixed point results without mixed monotone property of F : X × X → X . An example supporting to our result has also been cited. As an application the solution of integral equations are obtained here to illustrate the usability of the obtained results. We improve, extend and generalize several known results.

Generalized Principal Ratio Combining of Space-Time Trellis Coded OFDM over Multi-Path Fading Channels (다중 경로 채널에서 공간-시간 트렐리스 부호화된 OFDM의 일반화된 준최적 검파)

  • Kim, Young-Ju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.352-357
    • /
    • 2008
  • We present a space-time trellis coded OFDM system in slow fading channels. Generalized principal ratio combining (GPRC) is also analyzed theoretically in frequency domain. The analysis shows that the decoding metric of GPRC includes the metrics of maximum likelihood(ML) and PRC. The computer simulations with M-PSK modulation are obtained in frequency flat and frequency selective fading channels. The decoding complexity and simulation running times are also evaluated among the decoding schemes.

GENERALIZED CONDITIONS FOR THE CONVERGENCE OF INEXACT NEWTON-LIKE METHODS ON BANACH SPACES WITH A CONVERGENCE STRUCTURE AND APPLICATIONS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.433-448
    • /
    • 1998
  • In this study we use inexact Newton-like methods to find solutions of nonlinear operator equations on Banach spaces with a convergence structure. Our technique involves the introduction of a generalized norm as an operator from a linear space into a par-tially ordered Banach space. In this way the metric properties of the examined problem can be analyzed more precisely. Moreover this approach allows us to derive from the same theorem on the one hand semi-local results of kantorovich-type and on the other hand 2global results based on monotonicity considerations. By imposing very general Lipschitz-like conditions on the operators involved on the other hand by choosing our operators appropriately we can find sharper error bounds on the distances involved than before. Furthermore we show that special cases of our results reduce to the corresponding ones already in the literature. Finally our results are used to solve integral equations that cannot be solved with existing methods.

ON THE CLASS OF COMPLEX DOUGLAS-KROPINA SPACES

  • Aldea, Nicoleta;Munteanu, Gheorghe
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.251-266
    • /
    • 2018
  • In this paper, considering the class of complex Kropina metrics we obtain the necessary and sufficient conditions that these are generalized Berwald and complex Douglas metrics, respectively. Special attention is devoted to a class of complex Douglas-Kropina spaces, in complex dimension 2. Also, some examples of complex Douglas-Kropina metrics are pointed out. Finally, the complex Douglas-Kropina metrics are characterized through the theory of projectively related complex Finsler metrics.

COMMON COUPLED FIXED POINT THEOREM UNDER GENERALIZED MIZOGUCHI-TAKAHASHI CONTRACTION FOR HYBRID PAIR OF MAPPINGS GENERALIZED MIZOGUCHI-TAKAHASHI CONTRACTION

  • DESHPANDE, BHAVANA;HANDA, AMRISH
    • The Pure and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.199-214
    • /
    • 2015
  • We establish a common coupled fixed point theorem for hybrid pair of mappings under generalized Mizoguchi-Takahashi contraction on a noncomplete metric space, which is not partially ordered. It is to be noted that to find coupled oincidence point, we do not employ the condition of continuity of any mapping involved therein. An example is also given to validate our results. We improve, extend and generalize several known results.

Some Paranormed Difference Sequence Spaces Derived by Using Generalized Means

  • MANNA, ATANU;MAJI, AMIT;SRIVASTAVA, PARMESHWARY DAYAL
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.909-931
    • /
    • 2015
  • This paper presents some new paranormed sequence spaces $X(r,s,t,p;{\Delta})$ where $X{\in}\{l_{\infty}(p),c(p),c_0(p),l(p)\}$ defined by using generalized means and difference operator. It is shown that these are complete linear metric spaces under suitable paranorms. Furthermore, the ${\alpha}$-, ${\beta}$-, ${\gamma}$-duals of these sequence spaces are computed and also obtained necessary and sufficient conditions for some matrix transformations from $X(r,s,t,p;{\Delta})$ to X. Finally, it is proved that the sequence space $l(r,s,t,p;{\Delta})$ is rotund when $p_n$ > 1 for all n and has the Kadec-Klee property.

COMMON COUPLED FIXED POINT RESULTS FOR HYBRID PAIR OF MAPPING UNDER GENERALIZED (𝜓, 𝜃, 𝜑)-CONTRACTION WITH APPLICATION

  • Handa, Amrish
    • The Pure and Applied Mathematics
    • /
    • v.26 no.3
    • /
    • pp.111-131
    • /
    • 2019
  • We introduce (CLRg) property for hybrid pair $F:X{\times}X{\rightarrow}2^X$ and $g:X{\rightarrow}X$. We also introduce joint common limit range (JCLR) property for two hybrid pairs $F,G:X{\times}X{\rightarrow}2^X$ and $f,g:X{\rightarrow}X$. We also establish some common coupled fixed point theorems for hybrid pair of mappings under generalized (${\psi},{\theta},{\varphi}$)-contraction on a noncomplete metric space, which is not partially ordered. It is to be noted that to find coupled coincidence point, we do not employ the condition of continuity of any mapping involved therein. As an application, we study the existence and uniqueness of the solution to an integral equation. We also give an example to demonstrate the degree of validity of our hypothesis. The results we obtain generalize, extend and improve several recent results in the existing literature.

VOLUME OF C1,α-BOUNDARY DOMAIN IN EXTENDED HYPERBOLIC SPACE

  • Cho, Yun-Hi;Kim, Hyuk
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.6
    • /
    • pp.1143-1158
    • /
    • 2006
  • We consider the projectivization of Minkowski space with the analytic continuation of the hyperbolic metric and call this an extended hyperbolic space. We can measure the volume of a domain lying across the boundary of the hyperbolic space using an analytic continuation argument. In this paper we show this method can be further generalized to find the volume of a domain with smooth boundary with suitable regularity in dimension 2 and 3. We also discuss that this volume is invariant under the group of hyperbolic isometries and that this regularity condition is sharp.