• Title/Summary/Keyword: generalized method of cells

Search Result 25, Processing Time 0.022 seconds

Topological Design Sensitivity on the Air Bearing Surface of Head Slider

  • Yoon, Sang-Joon;Kim, Min-Soo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1102-1108
    • /
    • 2002
  • In this study, a topological design sensitivity of the ai. bearing surface (ABS) is suggested by using an adjoint variable method. The discrete form of the generalized lubrication equation based on a control volume formulation is used as a compatible condition. A residual function of the slider is considered as an equality constraint function, which represents the slider in equilibrium. The slider thickness parameters at all grid cells are chosen as design variables since they are the topological parameters determining the ABS shape. Then, a complicated adjoint variable equation is formulated to directly handle the highly nonlinear and asymmetric coefficient matrix and vector in the discrete system equation of air-lubricated slider bearings. An alternating direction implicit (ADI) scheme is utilized for the numerical calculation. This is an efficient iterative solver to solve large-scale problem in special band storage. Then, a computer program is developed and applied to a slider model of a sophisticated shape. The simulation results of design sensitivity analysis (DSA) are directly compared with those of FDM at the randomly selected grid cells to show the effectiveness of the proposed approach. The overall distribution of DSA results are reported, clearly showing the region on the ABS where special attention should be given during the manufacturing process.

Atomistic analysis of nano/micro biosensors

  • Chen, James;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.111-121
    • /
    • 2010
  • Dynamic analysis of nano/micro bio-sensors based on a multiscale atomistic/continuum theory is introduced. We use a generalized atomistic finite element method (GAFEM) to analyze a bio-sensor which has $3{\times}N_a{\times}N_p$ degrees of freedom, where $N_p$ is the number of representative unit cells and $N_a$ is the number of atoms per unit cell. The stiffness matrix is derived from interatomic potential between pairs of atoms. This work contains two studies: (1) the resonance analysis of nano bio-sensors with different amount of target analyte and (2) the dependence of resonance frequency on finite element mesh. We also examine the Courant-Friedrichs-Lewy (CFL) condition based on the highest resonance frequency. The CFL condition is the criterion for the time step used in the dynamic analysis by GAFEM. Our studies can be utilized to predict the performance of micro/nano bio-sensors from atomistic perspective.

모멘트 생성 함수 기법을 이용한 유연 제조 셀의 해석적 성능 평가

  • 박용수;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.506-511
    • /
    • 1996
  • The performance evaluation of flexible manufacturing systems or cells at the stages of design and planning is one of important issues in manufacturing. For that reason, Guo has presented an approachbased on moment generating function and generalized stochastic PetriNets for performance analysis. In this paper, Buo's approach is extended tothe cases of flexible manufacturing cell including one machining center with a local buffer, AS/RS(Automatic Storage and Retrieval System), set-up station and AGV(Automated Guided Vehicle). Then the performance measures from this approach is compared with simulation. The major advantage ofthis method over existing performance evaluation methods is the ability to compute analytic solutions for performance measures.

  • PDF

Deep neural networks trained by the adaptive momentum-based technique for stability simulation of organic solar cells

  • Xu, Peng;Qin, Xiao;Zhu, Honglei
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.259-272
    • /
    • 2022
  • The branch of electronics that uses an organic solar cell or conductive organic polymers in order to yield electricity from sunlight is called photovoltaic. Regarding this crucial issue, an artificial intelligence-based predictor is presented to investigate the vibrational behavior of the organic solar cell. In addition, the generalized differential quadrature method (GDQM) is utilized to extract the results. The validation examination is done to confirm the credibility of the results. Then, the deep neural network with fully connected layers (DNN-FCL) is trained by means of Adam optimization on the dataset whose members are the vibration response of the design-points. By determining the optimum values for the biases along with weights of DNN-FCL, one can predict the vibrational characteristics of any organic solar cell by knowing the properties defined as the inputs of the mentioned DNN. To assess the ability of the proposed artificial intelligence-based model in prediction of the vibrational response of the organic solar cell, the authors monitored the mean squared error in different steps of the training the DNN-FCL and they observed that the convergency of the results is excellent.

Numerical Analysis of Supersonic Axisymmetric Screech Tone Noise Using Optimized High-Order, High-Resolution Compact Scheme (최적회된 고차-고해상도 집적 유한 차분법을 이용한 초음속 제트 스크리치 톤 수치 해석)

  • Lee, In-Cheol;Lee, Duck-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1E
    • /
    • pp.32-35
    • /
    • 2006
  • The screech tone of underexpanded jet is numerically calculated without any specific modeling for the screech tone itself. Fourth-order optimized compact scheme and fourth-order Runge-Kutta method are used to solve the 2D axisymmetric Euler equation. Adaptive nonlinear artificial dissipation model and generalized characteristic boundary condition are also used. The screech tone, generated by a closed loop between instability waves and quasi-periodic shock cells at the near field, is reasonably analyzed with present numerical methods for the underexpanded jet having Mach number 1.13. First of all, the centerline mean pressure distribution is calculated and compared with experimental and other numerical results. The instantaneous density contour plot shows Mach waves due to mixing layer convecting supersonically, which propagate downstream. The pressure signal and its Fourier transform at upstream and downstream shows the directivity pattern of screech tone very clearly. Most of all, we can simulate the axisymmetric mode change of screech tone very precisely with present method. It can be concluded that the basic phenomenon of screech tone including the frequency can be calculated by using high-order and high-resolution schemes without any specific numerical modeling for screech tone feedback loop.

Path-finding by using generalized visibility graphs in computer game environments (컴퓨터 게임 환경에서 일반화 가시성 그래프를 이용한 경로찾기)

  • Yu, Kyeon-Ah;Jeon, Hyun-Joo
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.21-31
    • /
    • 2005
  • In state-of-the-art games, characters can move in a goal-directed manner so that they can move to the goal position without colliding obstacles. Many path-finding methods have been proposed and implemented for these characters and most of them use the A* search algorithm. When .the map is represented with a regular grid of squares or a navigation mesh, it often takes a long time for the A* to search the state space because the number of cells used In the grid or the mesh increases for higher resolution. Moreover the A* search on the grid often causes a zigzag effect, which is not optimal and realistic. In this paper we propose to use visibility graphs to improve the search time by reducing the search space and to find the optimal path. We also propose a method of taking into account the size of moving characters in the phase of planning to prevent them from colliding with obstacles as they move. Simulation results show that the proposed method performs better than the grid-based A* algorithm in terms of the search time and space and that the resulting paths are more realistic.

  • PDF

Modeling mesoscale uncertainty for concrete in tension

  • Tregger, Nathan;Corr, David;Graham-Brady, Lori;Shah, Surendra
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.347-362
    • /
    • 2007
  • Due to heterogeneities at all scales, concrete exhibits significant variability in mechanical behavior from sample to sample. An understanding of the fundamental mechanical performance of concrete must therefore be embedded in a stochastic framework. The current work attempts to address the connection between a two-dimensional concrete mesostructure and the random local material properties associated within that mesostructure. This work builds on previous work that has focused on the random configuration of concrete mesostructures. This was accomplished by developing an understanding of the effects of variations in the mortar strength and the mortar-aggregate interfacial strength in given deterministic mesostructural configurations. The results are assessed through direct tension tests that are validated by comparing experimental results of two different, pre-arranged mesostructures, with the intent of isolating the effect of local variations in strength. Agreement is shown both in mechanical property values as well as the qualitative nature of crack initiation and propagation.

Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition

  • Ghimire, Deepak;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • v.10 no.3
    • /
    • pp.443-458
    • /
    • 2014
  • An extreme learning machine (ELM) is a recently proposed learning algorithm for a single-layer feed forward neural network. In this paper we studied the ensemble of ELM by using a bagging algorithm for facial expression recognition (FER). Facial expression analysis is widely used in the behavior interpretation of emotions, for cognitive science, and social interactions. This paper presents a method for FER based on the histogram of orientation gradient (HOG) features using an ELM ensemble. First, the HOG features were extracted from the face image by dividing it into a number of small cells. A bagging algorithm was then used to construct many different bags of training data and each of them was trained by using separate ELMs. To recognize the expression of the input face image, HOG features were fed to each trained ELM and the results were combined by using a majority voting scheme. The ELM ensemble using bagging improves the generalized capability of the network significantly. The two available datasets (JAFFE and CK+) of facial expressions were used to evaluate the performance of the proposed classification system. Even the performance of individual ELM was smaller and the ELM ensemble using a bagging algorithm improved the recognition performance significantly.

Using the Loss parameter calculation method for the CPV system simulation (손실파라미터계산방법을 이용한 집광형태양광발전시스템 시뮬레이션)

  • Lee, Kang-Yeon;Jeong, Byeong-Ho;Kim, Ji-won
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.17-26
    • /
    • 2017
  • CPV system is composed with CPV cells, modules, PCS(power conditioning system), solar tracker, system installation and balance of systems(BOS). Mention about modelling method which is applied for CPV system simulation and evaluation system analysis. This paper focuses on CPV system modeling and optimal design of the electric energy production analysis through the development of proposed optimal CPV system simulation. Calculated simulation results of the generalized CPV system in regard to loss parameter calculation method can make out optimal configuration of CPV system with high reliability and stability. The loss parameter calculation method establish a mathematical modeling for the purposed of simulation and utilization various data for economical analysis of the CPV system design.

Periodontal treatment of a patient with aplastic anemia (재생 불량성 빈혈(Aplastic anemias) 환자의 치주 치료 증례)

  • Bae, Kyoo-Hyun;Han, Soo-Boo;Kim, Woo-Sung;Lee, Hye-Ja;Kim, Dong-Kyoon
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.1
    • /
    • pp.187-191
    • /
    • 1998
  • Aplastic anemia is a disease characterized by general lack of bone marrow activity; It may affect not only the red blood cells but also the white blood cells and platelets, resulting in pancytopenia. Spontaneous gingival hemorrhage is present in some cases and it is related to the blood platelet deficiency. This case report presents the periodontal treatment of a patient with aplastic anemia. A 43-year-old female was referred for continuous gingival bleeding after periodontal treatment. Periodontal findings revealed generalized gingival imflammation, oozing of blood from gingival crevice, and it was diagnosed as adult periodontitis. Root planing and extraction of the upper left third molar with poor prognosis were put into operation after elevation of the platelet count with platelet transfusion. The extraction socket was sutured with 3-0 silk. Bleeding continued even after digital compression at the upper right second premolar, second molar, and left canine areas, which presented severe inflammation. Although platelets were transfused repeatedly, platelet count did not stay elevated since survival rate of the transfused platelets were low due to alloimmunization. Thrombin gauze packing was not effective. Bleeding ceased 3 days after treatment with transfusion of donor platelets. 20 days after the treatment, the gingiva was generally healthy except upper right second premolar and lateral incisor areas. The result of periodontal treatment was good, but bleeding control after treatment was troublesome. In the periodontal treatment of patient with aplastic anemia, elevation of the platelet count with platelet transfusion seems to be the best method for hemorrhage control.

  • PDF