Communications for Statistical Applications and Methods
/
제26권3호
/
pp.305-313
/
2019
Generalized canonical correlation analysis (GCCA) extends the canonical correlation analysis (CCA) to the case of more than two sets of variables and there have been many studies on how two-set canonical solutions can be generalized. In this paper, we derive certain stationary equations which can lead the higher-order solutions of several GCCA methods and suggest a type of iterative procedure to obtain the canonical coefficients. In addition, with some numerical examples we present the methods for graphical display, which are useful to interpret the GCCA results obtained.
In the present paper, various solutions for generalized canonical correlation analysis (GCCA) are considered depending on the criteria and constraints. For the comparisons of some characteristics of the solutions, we provide with certain unifying stationary equations which might to also useful to obtain various generalized canonical correlation analysis solutions. In addition, we suggest an approach for the generalized canonical correlation analysis by exploiting the concept of maximum eccentricity originally de-signed to test the internal independence structure. The solutions, including new one, are compared through unifying stationary equations and by using some numerical illustrations. A type of iterative procedure for the GCCA solutions is suggested and some numerical examples are provided to illustrate several GCCA methods.
Communications for Statistical Applications and Methods
/
제17권6호
/
pp.917-925
/
2010
일반적으로 정준상관 행렬도(canonical correlation biplot)는 정준상관분석에서 두 변수집단에 의해서 측정된 다변량 자료에서 변수 집단 간의 관계와 개체들의 관계를 탐색하기 위한 2차원 그림이다. 최근에 이를 활용하여 최태훈과 최용석 (2008)은 2006년도 한국여자골프협회(KLPGA) 선수에 대한 기술요인 변수군과 경기성적요인 변수군간의 관련성을 살펴보았고 최태훈 등 (2009)은 테니스 그랜드 슬램대회 선수특성요인과 경기요인에 대한 분석을 하였다. 더군다나 세 변수군 이상의 정준상관분석을 일반화 정준상관분석(generalized canonical correlation analysis)이라 하며 이와 관련하여 허명회 (1999, 6장)는 수량화 플롯을 제안하고있다. 이를 행렬도의 의미에서 일반화 정준상관 행렬도(generalized canonical correlation biplot)라하자. 본 연구에서는 대한 테니스협회(KTA)에 등록된 남자선수들 중 상위50명의 체격요인, 체력요인 및 기초기술요인에 대한 분석을 일반화 정준상관 행렬도를 적용하여 살펴보고 프로크러스티즈 분석을 통하여 전체선수, 상위랭킹과 하위랭킹 선수간의 행렬도 형상비교를 시도 하였다.
행렬도는 이원표 자료행렬의 행과 열을 탐색하기에 유용한 그래프적 방법이다. 특히, 정준상관 행렬도는 정준상관분석의 결과를 이용하여 두 변수군과 개체간의 관계를 기하적으로 살펴볼 수 있다. 그 반면에 자료의 성격에 따라 세개 이상의 변수군이 존재하는 경우에는 정준상관분석의 개념에서 확장한 일반화 정준상관분석을 이용하여 일반화 정준상관 행렬도를 고려할 수 있다. 그러나 자료의 성격에 따라 두 변수군 외에 이들 두 변수군에 선형적 영향을 미치는 공변량변수로 이루어진 다른 한 변수군이 존재하는 경우에, 일반화 정준상관 행렬도를 적용한다면 공변량변수군의 영향력 때문에 주 관심인 두 변수군에 대하여 잘못 해석할 수 있다. 따라서 본 연구에서는 Rao (1969)의 공변량 변수군의 영향력을 제거한 편정준상관분석을 살펴보고, 이를 기하적으로 해석하기 위한 편정준상관 행렬도를 제안한다.
An extended version of the minimax eccentricity factor estimation for multiple set case is proposed. In addition, two more simple methods for multiple set factor analysis exploiting the concept of generalized canonical correlation analysis is suggested. Finally, a certain connection between the generalized canonical correlation analysis and the multiple set factor analysis is derived which helps us clarify the relationship.
Recently, there have been many studies in medicine related to genetic analysis. Many genetic studies have been performed to find genes associated with complex diseases. To find out how genes are related to disease, we need to understand not only the simple relationship of genotypes but also the way they are related to phenotype. Multi-block data, which is a summation form of variable sets, is used for enhancing the analysis of the relationships of different blocks. By identifying relationships through a multi-block data form, we can understand the association between the blocks in comprehending the correlation between them. Several statistical analysis methods have been developed to understand the relationship between multi-block data. In this paper, we will use generalized canonical correlation methodology to analyze multi-block data from the Korean Association Resource project, which has a combination of single nucleotide polymorphism blocks, phenotype blocks, and disease blocks.
Communications for Statistical Applications and Methods
/
제19권1호
/
pp.97-105
/
2012
일반화 정준상관 행렬도(generalized canonical correlation biplot)는 정준상관분석에서 세 변수군 이상에 의해서 측정된 다변량 자료에서 변수 집단 간의 관계와 개체들의 관계를 탐색하기 위한 2차원 그림이다. 최근에 이를 활용하여 최태훈과 최용석 (2010)은 2004년 대한테니스협회(KTA)에 등록된 남자선수들 중 상위 50명을 대상으로 세 변수군인 체격요인변수군, 체력요인변수군 그리고 기초기술요인변수군의 상호 연관성을 살펴보았다. 그러나 이들 분석에서 체격요인변수군이 나머지 두 변수군과 독립적이지 못하고 선형적 영향을 미치는 것으로 판단되어 이를 공변량변수군으로 고려하였다. 이와같이 세 변수군에서 한 변수군이 공변량(covariate)으로 영향을 주는 경우 이를 제거한 정준상관분석을 편(partial)정준상관분석이라 하며 이와 관련된 편정준상관 행렬도를 염아림과 최용석 (2011)은 제안하였다. 본 연구에서는 최태훈과 최용석(2010)의 분석에서 체격요인변수군의 영향을 제거하고 체력요인변수군과 기초기술요인변수군의 관계를 살펴보는 편정준상관 행렬도의 활용의 예를 보이고 기존 연구의 일반화 정준상관 행렬도, 편정준상관 행렬도, 정준상관 행렬도의 결과를 서로 비교하고자 한다. 덧붙여 이들 행렬도간의 형상변동 차이를 프로크러스티즈 분석을 활용하여 비교하고자 한다.
Geometric approach to extend the classical two-set theory of canonical correlation analysis to three or more sets is considered. It provides statistical graphs to represent the data in a low dimensional space. Procedures are developed for computing the canonical variables and the corresponding properties are investigated. The solution is equivalent to that of the usual problem in the case of two sets. Goodness-of-fit of the proposed plots is studied and a numerical example is included.
Let $R\;{\in}\;C^{m{\times}m}$ and $S\;{\in}\;C^{n{\times}n}$ be nontrivial unitary involutions, i.e., $R^*\;=\;R\;=\;R^{-1}\;{\neq}\;I_m$ and $S^*\;=\;S\;=\;S^{-1}\;{\neq}\;I_m$. We say that $G\;{\in}\;C^{m{\times}n}$ is a generalized reflexive matrix if RGS = G. The set of all m ${\times}$ n generalized reflexive matrices is denoted by $GRC^{m{\times}n}$. In this paper, an efficient method for the least squares solution $X\;{\in}\;GRC^{m{\times}n}$ of the matrix equation AXB = D with arbitrary coefficient matrices $A\;{\in}\;C^{p{\times}m}$, $B\;{\in}\;C^{n{\times}q}$and the right-hand side $D\;{\in}\;C^{p{\times}q}$ is developed based on the canonical correlation decomposition(CCD) and, an explicit formula for the general solution is presented.
음원 위치 추정은 여러 방면에서 쓰임이 있는 응용 기술이다. 음원의 위치를 추정하기 위한 기본 기법 중에는 시간 지연 추정 기법이 있다. 이 기법에선 음원의 위치를 추정하기 위해서 두 개 또는 그 이상의 수신기에 들어오는 신호간의 상대적 시간 지연을 알아내야 한다. 시간 지연 추정 기법에는 일반화 된 상호 상관(Generalized Cross-Correlation, GCC) 대표적이지만, 정준형 상관 분석(Canonical Correlation Analysis, CCA)을 이용한 방법도 있다. 본 논문에서는 시간 지연 추정용 정준형 상관 분석의 고유벡터의 희소성을 이용하기 위해 새로운 알고리즘을 제안한다. 이를 위해서 로그-합(log-sum) 정규화를 이용한다. 본 논문에서는 서로 다른 여러 신호 대 잡음비 환경 하에서 비교 모의실험을 하였고, 이 비교 실험을 통하여 얻는 데이터를 통해서 제안한 새 정준형 상관 분석 기반 알고리즘이 이전의 정준형 상관분석 기반 알고리즘이나 기존 GCC보다 더 우수하다는 것을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.