• 제목/요약/키워드: generalized analytic Feynman integral

검색결과 31건 처리시간 0.019초

GENERALIZED ANALYTIC FEYNMAN INTEGRALS INVOLVING GENERALIZED ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND GENERALIZED INTEGRAL TRANSFORMS

  • Chang, Seung Jun;Chung, Hyun Soo
    • 충청수학회지
    • /
    • 제21권2호
    • /
    • pp.231-246
    • /
    • 2008
  • In this paper, we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish several integration formulas for generalized analytic Feynman integrals generalized analytic Fourier-Feynman transforms and generalized integral transforms of functionals in the class of functionals ${\mathbb{E}}_0$. Finally, we use these integration formulas to obtain several generalized Feynman integrals involving the generalized analytic Fourier-Feynman transform and the generalized integral transform of functionals in ${\mathbb{E}}_0$.

  • PDF

A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRALS AND FOURIER-FEYNMAN TRANSFORMS ON FUNCTION SPACE

  • Chang, Seung-Jun;Lee, Il-Yong
    • 대한수학회보
    • /
    • 제40권3호
    • /
    • pp.437-456
    • /
    • 2003
  • In this paper we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish a Fubini theorem for the function space integral and generalized analytic Feynman integral of a functional F belonging to Banach algebra $S(L^2_{a,b}[0,T])$ and we proceed to obtain several integration formulas. Finally, we use this Fubini theorem to obtain several Feynman integration formulas involving analytic generalized Fourier-Feynman transforms. These results subsume similar known results obtained by Huffman, Skoug and Storvick for the standard Wiener process.

CONDITIONAL GENERALIZED FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ON A BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • 대한수학회보
    • /
    • 제41권1호
    • /
    • pp.73-93
    • /
    • 2004
  • In [10], Chang and Skoug used a generalized Brownian motion process to define a generalized analytic Feynman integral and a generalized analytic Fourier-Feynman transform. In this paper we define the conditional generalized Fourier-Feynman transform and conditional generalized convolution product on function space. We then establish some relationships between the conditional generalized Fourier-Feynman transform and conditional generalized convolution product for functionals on function space that belonging to a Banach algebra.

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON THE BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • 대한수학회논문집
    • /
    • 제19권1호
    • /
    • pp.93-111
    • /
    • 2004
  • In this paper, we use a generalized Brownian motion process to define a generalized Feynman integral and a generalized Fourier-Feynman transform. We also define the concepts of the multiple Lp analytic generalized Fourier-Feynman transform and the generalized convolution product of functional on function space $C_{a,\;b}[0,\;T]$. We then verify the existence of the multiple $L_{p}$ analytic generalized Fourier-Feynman transform for functional on function space that belong to a Banach algebra $S({L_{a,\;b}}^{2}[0, T])$. Finally we establish some relationships between the multiple $L_{p}$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $S({L_{a,\;b}}^{2}[0, T])$.

A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRAL ON FUNCTION SPACE

  • Lee, Il Yong;Choi, Jae Gil;Chang, Seung Jun
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.217-231
    • /
    • 2013
  • In this paper we establish a Fubini theorem for generalized analytic Feynman integral and $L_1$ generalized analytic Fourier-Feynman transform for the functional of the form $$F(x)=f({\langle}{\alpha}_1,\;x{\rangle},\;{\cdots},\;{\langle}{{\alpha}_m,\;x{\rangle}),$$ where {${\alpha}_1$, ${\cdots}$, ${\alpha}_m$} is an orthonormal set of functions from $L_{a,b}^2[0,T]$. We then obtain several generalized analytic Feynman integration formulas involving generalized analytic Fourier-Feynman transforms.

GENERALIZED ANALYTIC FEYNMAN INTEGRAL VIA FUNCTION SPACE INTEGRAL OF BOUNDED CYLINDER FUNCTIONALS

  • Chang, Seung-Jun;Choi, Jae-Gil;Chung, Hyun-Soo
    • 대한수학회보
    • /
    • 제48권3호
    • /
    • pp.475-489
    • /
    • 2011
  • In this paper, we use a generalized Brownian motion to define a generalized analytic Feynman integral. We then obtain some results for the generalized analytic Feynman integral of bounded cylinder functionals of the form F(x) = $\hat{v}$(($g_1,x)^{\sim}$,..., $(g_n,x)^{\sim}$) defined on a very general function space $C_{a,b}$[0,T]. We also present a change of scale formula for function space integrals of such cylinder functionals.

Convolution product and generalized analytic Fourier-Feynman transforms

  • Chang, Seung-Jun
    • 대한수학회논문집
    • /
    • 제11권3호
    • /
    • pp.707-723
    • /
    • 1996
  • We first define the concept of the generalized analytic Fourier-Feynman transforms of a class of functionals on function space induced by a generalized Brownian motion process and study of functionals which plays on important role in physical problem of the form $ F(x) = {\int^{T}_{0} f(t, x(t))dt} $ where f is a complex-valued function on $[0, T] \times R$. We next show that the generalized analytic Fourier-Feynman transform of the convolution product is a product of generalized analytic Fourier-Feynman transform of functionals on functin space.

  • PDF

OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER SPACE II

  • Cho, Dong Hyun
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.903-924
    • /
    • 2016
  • In the present paper, using a simple formula for the conditional expectations given a generalized conditioning function over an analogue of vector-valued Wiener space, we prove that the analytic operator-valued Feynman integrals of certain classes of functions over the space can be expressed by the conditional analytic Feynman integrals of the functions. We then provide the conditional analytic Feynman integrals of several functions which are the kernels of the analytic operator-valued Feynman integrals.

ANALYTIC OPERATOR-VALUED GENERALIZED FEYNMAN INTEGRALS ON FUNCTION SPACE

  • Chang, Seung Jun;Lee, Il Yong
    • 충청수학회지
    • /
    • 제23권1호
    • /
    • pp.37-48
    • /
    • 2010
  • In this paper we use a generalized Brownian motion process to defined an analytic operator-valued generalized Feynman integral. We then obtain explicit formulas for the analytic operatorvalued generalized Feynman integrals for functionals of the form $$F(x)=f\({\int}^T_0{\alpha}_1(t)dx(t),{\cdots},{\int}_0^T{\alpha}_n(t)dx(t)\)$$, where x is a continuous function on [0, T] and {${\alpha}_1,{\cdots},{\alpha}_n$} is an orthonormal set of functions from ($L^2_{a,b}[0,T]$, ${\parallel}{\cdot}{\parallel}_{a,b}$).

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON A FRESNEL TYPE CLASS

  • Chang, Seung Jun;Lee, Il Yong
    • 충청수학회지
    • /
    • 제19권1호
    • /
    • pp.79-99
    • /
    • 2006
  • In this paper, we define a class of functional defined on a very general function space $C_{a,b}[0,T]$ like a Fresnel class of an abstract Wiener space. We then define the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product of functionals on function space $C_{a,b}[0,T]$. Finally, we establish some relationships between the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $\mathcal{F}(C_{a,b}[0,T])$.

  • PDF