• Title/Summary/Keyword: generalized Ulam-Hyers stability

Search Result 164, Processing Time 0.022 seconds

STABILITY OF FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES: A FIXED POINT APPROACH

  • Park, Choonkil;Hur, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.413-424
    • /
    • 2008
  • In [21], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\parallel}\frac{1}{n}\sum\limits_{i=1}^{n}x_i{\parallel}^2+\sum\limits_{i=1}^{n}{\parallel}x_i-\frac{1}{n}\sum\limits_{j=1}^{n}x_j{\parallel}^2=\sum\limits_{i=1}^{n}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\dots},x_n{\in}V$. We consider the functional equation $$nf(\frac{1}{n}\sum\limits^n_{i=1}x_i)+\sum\limits_{i=1}^{n}f(x_i-\frac{1}{n}\sum\limits_{j=1}^{n}x_j)=\sum\limits_{i=1}^nf(x_i)$$ Using fixed point methods, we prove the generalized Hyers-Ulam stability of the functional equation $$(1)\;2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})=f(x)+f(y)$$.

  • PDF

GENERALIZED QUADRATIC MAPPINGS IN 2d VARIABLES

  • Cho, Yeol Je;Lee, Sang Han;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Let X, Y be vector spaces. It is shown that if an even mapping $f:X{\rightarrow}Y$ satisfies f(0) = 0, and $$2(_{2d-2}C_{d-1}-_{2d-2}C_d)f\({\sum_{j=1}^{2d}}x_j\)+{\sum_{{\iota}(j)=0,1,{{\small\sum}_{j=1}^{2d}}{\iota}(j)=d}}\;f\({\sum_{j=1}^{2d}}(-1)^{{\iota}(j)}x_j\)=2(_{2d-1}C_d+_{2d-2}C_{d-1}-_{2d-2}C_d){\sum_{j=1}^{2d}}f(x_j)$$ for all $x_1$, ${\cdots}$, $x_{2d}{\in}X$, then the even mapping $f:X{\rightarrow}Y$ is quadratic. Furthermore, we prove the Hyers-Ulam stability of the above functional equation in Banach spaces.

APPROXIMATELY QUINTIC MAPPINGS IN NON-ARCHIMEDEAN 2-NORMED SPACES BY FIXED POINT THEOREM

  • KIM, CHANG IL;JUNG, KAP HUN
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.435-445
    • /
    • 2015
  • In this paper, using the fixed point method, we investigate the generalized Hyers-Ulam stability of the system of quintic functional equation $f(x_1+x_2,y)+f(x_1-x_2,y)=2f(x_1,y)+2f(x_2,y)\;f(x,2_{y1}+y_2)+f(x,2_{y1}-y_2)=f(x,y_1-2_{y2})+f(x,y_1+y_2)\;-f(x,y_1-y_2)+15f(x,y_1)+6f(x,y_2)$ in non-Archimedean 2-Banach spaces.

GENERALIZED CUBIC MAPPINGS OF r-TYPE IN SEVERAL VARIABLES

  • Kang, Dong Seung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.37-45
    • /
    • 2007
  • Let X, Y be vector spaces. In this paper, we investigate the generalized Hyers-Ulam-Rassias stability problem for a cubic function $f:X{\rightarrow}Y$ satisfies $$r^3f(\frac{\Sigma_{j=1}^{n-1}x_j+2x_n}{r})+r^3f(\frac{\Sigma_{j=1}^{n-1}x_j-2x_n}{r})+8\sum_{j=1}^{n-1}f(x_j)=2f{\sum_{j=1}^{n-1}}x_j)+4{\sum_{j=1}^{n-1}}(f(x_j+x_n)+f(x_j-x_n))$$ for all $x_1,{\cdots},x_n{\in}X$.

  • PDF

APPROXIMATELY QUADRATIC DERIVATIONS AND GENERALIZED HOMOMORPHISMS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.17 no.2
    • /
    • pp.115-130
    • /
    • 2010
  • Let $\cal{A}$ be a unital Banach algebra. If f : $\cal{A}{\rightarrow}\cal{A}$ is an approximately quadratic derivation in the sense of Hyers-Ulam-J.M. Rassias, then f : $\cal{A}{\rightarrow}\cal{A}$ is anexactly quadratic derivation. On the other hands, let $\cal{A}$ and $\cal{B}$ be Banach algebras.Any approximately generalized homomorphism f : $\cal{A}{\rightarrow}\cal{B}$ corresponding to Cauchy, Jensen functional equation can be estimated by a generalized homomorphism.

QUADRATIC MAPPINGS ASSOCIATED WITH INNER PRODUCT SPACES

  • Lee, Sung Jin
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • In [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $${\sum_{i=1}^{n}}\left\|x_i-{\frac{1}{n}}{\sum_{j=1}^{n}}x_j \right\|^2={\sum_{i=1}^{n}}{\parallel}x_i{\parallel}^2-n\left\|{\frac{1}{n}}{\sum_{i=1}^{n}}x_i \right\|^2$$ holds for all $x_1$, ${\cdots}$, $x_n{\in}V$. Let V, W be real vector spaces. It is shown that if an even mapping $f:V{\rightarrow}W$ satisfies $$(0.1)\;{\sum_{i=1}^{2n}f}\(x_i-{\frac{1}{2n}}{\sum_{j=1}^{2n}}x_j\)={\sum_{i=1}^{2n}}f(x_i)-2nf\({\frac{1}{2n}}{\sum_{i=1}^{2n}}x_i\)$$ for all $x_1$, ${\cdots}$, $x_{2n}{\in}V$, then the even mapping $f:V{\rightarrow}W$ is quadratic. Furthermore, we prove the generalized Hyers-Ulam stability of the quadratic functional equation (0.1) in Banach spaces.

FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES

  • Park, Choonkil;Huh, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.455-466
    • /
    • 2008
  • In, [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\left\|{\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i{\left\|^2+{\sum\limits_{i=1}^{n}}\right\|}{x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}x_j}}\right\|^2}={\sum\limits_{i=1}^{n}}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\cdots},x_{n}{\in}V$. Let V,W be real vector spaces. It is shown that if a mapping $f:V{\rightarrow}W$ satisfies $$(0.1){\hspace{10}}nf{\left({\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i \right)}+{\sum\limits_{i=1}^{n}}f{\left({x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}}x_i}\right)}\\{\hspace{140}}={\sum\limits_{i=1}^{n}}f(x_i)$$ for all $x_1$, ${\dots}$, $x_{n}{\in}V$ $$(0.2){\hspace{10}}2f\(\frac{x+y}{2}\)+f\(\frac{x-y}{2} \)+f\(\frac{y}{2}-x\)\\{\hspace{185}}=f(x)+f(y)$$ for all $x,y{\in}V$. Furthermore, we prove the generalized Hyers-Ulam stability of the functional equation (0.2) in real Banach spaces.

  • PDF

HYERS-ULAM-RASSIAS STABILITY OF QUADRATIC FUNCTIONAL EQUATION IN THE SPACE OF SCHWARTZ TEMPERED DISTRIBUTIONS

  • CHUNG JAEYOUNG
    • The Pure and Applied Mathematics
    • /
    • v.12 no.2 s.28
    • /
    • pp.133-142
    • /
    • 2005
  • Generalizing the Cauchy-Rassias inequality in [Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.] we consider a stability problem of quadratic functional equation in the spaces of generalized functions such as the Schwartz tempered distributions and Sato hyperfunctions.

  • PDF

ON THE STABILITY OF A BI-JENSEN FUNCTIONAL EQUATION

  • Jun, Kil-Woung;Lee, Yang-Hi;Oh, Jeong-Ha
    • The Pure and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.231-247
    • /
    • 2010
  • In this paper, we investigate the generalized Hyers-Ulam stability of a bi-Jensen functional equation $4f(\frac{x\;+\;y}{2},\;\frac{z\;+\;w}{2})$ = f(x, z) + f(x, w) + f(y, z) + f(y, w). Also, we establish improved results for the stability of a bi-Jensen equation on the punctured domain.

ON THE FUZZY STABILITY OF CUBIC MAPPINGS USING FIXED POINT METHOD

  • Koh, Heejeong
    • The Pure and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.397-407
    • /
    • 2012
  • Let X and Y be vector spaces. We introduce a new type of a cubic functional equation $f$ : $X{\rightarrow}Y$. Furthermore, we assume X is a vector space and (Y, N) is a fuzzy Banach space and then investigate a fuzzy version of the generalized Hyers-Ulam stability in fuzzy Banach space by using fixed point method for the cubic functional equation.