• Title/Summary/Keyword: generalized Hardy operator

Search Result 10, Processing Time 0.021 seconds

COMPUTATION OF THE MATRIX OF THE TOEPLITZ OPERATOR ON THE HARDY SPACE

  • Chung, Young-Bok
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1135-1143
    • /
    • 2019
  • The matrix representation of the Toeplitz operator on the Hardy space with respect to a generalized orthonormal basis for the space of square integrable functions associated to a bounded simply connected region in the complex plane is completely computed in terms of only the Szegő kernel and the Garabedian kernels.

GENERALIZING HARDY TYPE INEQUALITIES VIA k-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS INVOLVING TWO ORDERS

  • Benaissa, Bouharket
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.271-280
    • /
    • 2022
  • In this study, We have applied the right operator k-Riemann-Liouville is involving two orders α and β with a positive parameter p > 0, further, the left operator k-Riemann-Liouville is used with the negative parameter p < 0 to introduce a new version related to Hardy-type inequalities. These inequalities are given and reversed for the cases 0 < p < 1 and p < 0. We then improved and generalized various consequences in the framework of Hardy-type fractional integral inequalities.

GENERALIZED BOUNDED ANALYTIC FUNCTIONS IN THE SPACE Hω,p

  • Lee, Jun-Rak
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.193-202
    • /
    • 2005
  • We define a general space $H_{{\omega},p}$ of the Hardy space and improve that Aleman's results to the space $H_{{\omega},p}$. It follows that the multiplication operator on this space is cellular indecomposable and that each invariant subspace contains nontrivial bounded functions.

  • PDF

QUASI-INNER FUNCTIONS OF A GENERALIZED BEURLING'S THEOREM

  • Kim, Yun-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1229-1236
    • /
    • 2009
  • We introduce two kinds of quasi-inner functions. Since every rationally invariant subspace for a shift operator S$_K$ on a vector-valued Hardy space H$^2$(${\Omega}$, K) is generated by a quasi-inner function, we also provide relationships of quasi-inner functions by comparing rationally invariant subspaces generated by them. Furthermore, we discuss fundamental properties of quasi-inner functions and quasi-inner divisors.

TWO-WEIGHT NORM ESTIMATES FOR SQUARE FUNCTIONS ASSOCIATED TO FRACTIONAL SCHRÖDINGER OPERATORS WITH HARDY POTENTIAL

  • Tongxin Kang;Yang Zou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1567-1605
    • /
    • 2023
  • Let d ∈ ℕ and α ∈ (0, min{2, d}). For any a ∈ [a*, ∞), the fractional Schrödinger operator 𝓛a is defined by 𝓛a := (-Δ)α/2 + a|x|, where $a^*:={\frac{2^{\alpha}{\Gamma}((d+{\alpha})/4)^2}{{\Gamma}(d-{\alpha})/4)^2}}$. In this paper, we study two-weight Sobolev inequalities associated with 𝓛a and two-weight norm estimates for several square functions associated with 𝓛a.

ZERO BASED INVARIANT SUBSPACES AND FRINGE OPERATORS OVER THE BIDISK

  • Izuchi, Kei Ji;Izuchi, Kou Hei;Izuchi, Yuko
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.847-868
    • /
    • 2016
  • Let M be an invariant subspace of $H^2$ over the bidisk. Associated with M, we have the fringe operator $F^M_z$ on $M{\ominus}{\omega}M$. It is studied the Fredholmness of $F^M_z$ for (generalized) zero based invariant subspaces M. Also ker $F^M_z$ and ker $(F^M_z)^*$ are described.

ON THE GENERALIZED ORNSTEIN-UHLENBECK OPERATORS WITH REGULAR AND SINGULAR POTENTIALS IN WEIGHTED Lp-SPACES

  • Imen Metoui
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.149-160
    • /
    • 2024
  • In this paper, we give sufficient conditions for the generalized Ornstein-Uhlenbeck operators perturbed by regular potentials and inverse square potentials AΦ,G,V,c=∆-∇Φ·∇+G·∇-V+c|x|-2 with a suitable domain generates a quasi-contractive, positive and analytic C0-semigroup in Lp(ℝN , e-Φ(x)dx), 1 < p < ∞. The proofs are based on an Lp-weighted Hardy inequality and perturbation techniques. The results extend and improve the generation theorems established by Metoui [7] and Metoui-Mourou [8].

Fractional Integrals and Generalized Olsen Inequalities

  • Gunawan, Hendra;Eridani, Eridani
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Let $T_{\rho}$ be the generalized fractional integral operator associated to a function ${\rho}:(0,{\infty}){\rightarrow}(0,{\infty})$, as defined in [16]. For a function W on $\mathbb{R}^n$, we shall be interested in the boundedness of the multiplication operator $f{\mapsto}W{\cdot}T_{\rho}f$ on generalized Morrey spaces. Under some assumptions on ${\rho}$, we obtain an inequality for $W{\cdot}T_{\rho}$, which can be viewed as an extension of Olsen's and Kurata-Nishigaki-Sugano's results.