• Title/Summary/Keyword: generalized Eyring model

Search Result 3, Processing Time 0.017 seconds

Bayes factors for accelerated life testing models

  • Smit, Neill;Raubenheimer, Lizanne
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.513-532
    • /
    • 2022
  • In this paper, the use of Bayes factors and the deviance information criterion for model selection are compared in a Bayesian accelerated life testing setup. In Bayesian accelerated life testing, the most used tool for model comparison is the deviance information criterion. An alternative and more formal approach is to use Bayes factors to compare models. However, Bayesian accelerated life testing models with more than one stressor often have mathematically intractable posterior distributions and Markov chain Monte Carlo methods are employed to obtain posterior samples to base inference on. The computation of the marginal likelihood is challenging when working with such complex models. In this paper, methods for approximating the marginal likelihood and the application thereof in the accelerated life testing paradigm are explored for dual-stress models. A simulation study is also included, where Bayes factors using the different approximation methods and the deviance information are compared.

Investigation of the Acceleration Coefficient in Acceleration Models (가속모델의 가속계수 조사)

  • Hyunjong Park;Sungjun Kim;Beomsik Park;Somi Park;Siil Sung
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.1
    • /
    • pp.135-148
    • /
    • 2024
  • Purpose: This study is to investigate the literature on accelerated tests based on the acceleration model and to provide a compilation of results on the parameters applied in the acceleration model and the test conditions. Methods: This research is conducts a literature review on accelerated tests using the acceleration model, with a focus on test targets, test conditions, and parameter values. The study is organizing the results of this literature review to facilitate their application in the design of reliability tests. Results: A literature review investigated a variety of test targets, test conditions, and parameter values. Conclusion: The results of the literature research conducted revealed various acceleration model parameter. Such literature research on accelerated tests can establish the foundation for reliability test design and contribute to future product development and quality improvement

A Study on the Reliability Prediction about ECM of Packaging Substrate PCB by Using Accelerated Life Test (가속수명시험을 이용한 Packaging Substrate PCB의 ECM에 대한 신뢰성 예측에 관한 연구)

  • Kang, Dae-Joong;Lee, Hwa-Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.109-120
    • /
    • 2013
  • As information-oriented industry has been developed and electronic devices has come to be smaller, lighter, multifunctional, and high speed, the components used to the devices need to be much high density and should have find pattern due to high integration. Also, diverse reliability problems happen as user environment is getting harsher. For this reasons, establishing and securing products and components reliability comes to key factor in company's competitiveness. It makes accelerated test important to check product reliability in fast way. Out of fine pattern failure modes, failure of Electrochemical Migration(ECM) is kind of degradation of insulation resistance by electro-chemical reaction, which it comes to be accelerated by biased voltage in high temperature and high humidity environment. In this thesis, the accelerated life test for failure caused by ECM on fine pattern substrate, $20/20{\mu}m$ pattern width/space applied by Semi Additive Process, was performed, and through this test, the investigation of failure mechanism and the life-time prediction evaluation under actual user environment was implemented. The result of accelerated test has been compared and estimated with life distribution and life stress relatively by using Minitab software and its acceleration rate was also tested. Through estimated weibull distribution, B10 life has been estimated under 95% confidence level of failure data happened in each test conditions. And the life in actual usage environment has been predicted by using generalized Eyring model considering temperature and humidity by developing Arrhenius reaction rate theory, and acceleration factors by test conditions have been calculated.