• Title/Summary/Keyword: general mathematics

Search Result 1,664, Processing Time 0.025 seconds

ON NONLINEAR POLYNOMIAL SELECTION AND GEOMETRIC PROGRESSION (MOD N) FOR NUMBER FIELD SIEVE

  • Cho, Gook Hwa;Koo, Namhun;Kwon, Soonhak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • The general number field sieve (GNFS) is asymptotically the fastest known factoring algorithm. One of the most important steps of GNFS is to select a good polynomial pair. A standard way of polynomial selection (being used in factoring RSA challenge numbers) is to select a nonlinear polynomial for algebraic sieving and a linear polynomial for rational sieving. There is another method called a nonlinear method which selects two polynomials of the same degree greater than one. In this paper, we generalize Montgomery's method [12] using geometric progression (GP) (mod N) to construct a pair of nonlinear polynomials. We also introduce GP of length d + k with $1{\leq}k{\leq}d-1$ and show that we can construct polynomials of degree d having common root (mod N), where the number of such polynomials and the size of the coefficients can be precisely determined.

LOCI OF RATIONAL CURVES OF SMALL DEGREE ON THE MODULI SPACE OF VECTOR BUNDLES

  • Choe, In-Song
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.377-386
    • /
    • 2011
  • For a smooth algebraic curve C of genus g $\geq$ 4, let $SU_C$(r, d) be the moduli space of semistable bundles of rank r $\geq$ 2 over C with fixed determinant of degree d. When (r,d) = 1, it is known that $SU_C$(r, d) is a smooth Fano variety of Picard number 1, whose rational curves passing through a general point have degree $\geq$ r with respect to the ampl generator of Pic($SU_C$(r, d)). In this paper, we study the locus swept out by the rational curves on $SU_C$(r, d) of degree < r. As a by-product, we present another proof of Torelli theorem on $SU_C$(r, d).

REAL POLYHEDRAL PRODUCTS, MOORE'S CONJECTURE, AND SIMPLICIAL ACTIONS ON REAL TORIC SPACES

  • Kim, Jin Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1051-1063
    • /
    • 2018
  • The real moment-angle complex (or, more generally, real polyhedral product) and its real toric space have recently attracted much attention in toric topology. The aim of this paper is to give two interesting remarks regarding real polyhedral products and real toric spaces. That is, we first show that Moore's conjecture holds to be true for certain real polyhedral products. In general, real polyhedral products show some drastic difference between the rational and torsion homotopy groups. Our result shows that at least in terms of the homotopy exponent at a prime this is not the case for real polyhedral products associated to a simplicial complex whose minimal missing faces are all k-simplices with $k{\geq}2$. Moreover, we also show a structural theorem for a finite group G acting simplicially on the real toric space. In other words, we show that G always contains an element of order 2, and so the order of G should be even.

WEAK AMENABILITY OF THE LAU PRODUCT OF BANACH ALGEBRAS DEFINED BY A BANACH ALGEBRA MORPHISM

  • Ramezanpour, Mohammad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1991-1999
    • /
    • 2017
  • Let A and B be two Banach algebras and $T:B{\rightarrow}A$ be a bounded homomorphism, with ${\parallel}T{\parallel}{\leq}1$. Recently, Dabhi, Jabbari and Haghnejad Azar (Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 9, 1461-1474) obtained some results about the n-weak amenability of $A{\times}_TB$. In the present paper, we address a gap in the proof of these results and extend and improve them by discussing general necessary and sufficient conditions for $A{\times}_TB$ to be n-weakly amenable, for an integer $n{\geq}0$.

Application of Implicit Function Theorem to Existence of Solutions to Ordinary Differential Equations with Nonlocal Boundary Conditions, I (비국소 경계 조건들을 가진 상미분 방정식들의 근의 존재성에 음함수 정리들의 응용 I)

  • Do, Tae-Sug
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.219-224
    • /
    • 2002
  • We consider the problem y"=a(x,y)(y-b), y(0)=0, y'(1)=g(y(${\xi}$), y'(${\xi}$)), (0${\xi}$ fixed in(0,1)) as a model of steady-slate heat conduction in a rod when the heat flux at the end x = 1 is determined by observation of the temperature and heat flux at some interior point ${\xi}$. We establish conditions sufficient for existence, uniqueness.

  • PDF

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A.;Mohamed, Norhan A.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.501-514
    • /
    • 2020
  • This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

ORTHOGONAL DISTANCE FITTING OF ELLIPSES

  • Kim, Ik-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.121-142
    • /
    • 2002
  • We are interested in the curve fitting problems in such a way that the sum of the squares of the orthogonal distances to the given data points is minimized. Especially, the fitting an ellipse to the given data points is a problem that arises in many application areas, e.g. computer graphics, coordinate metrology, etc. In [1] the problem of fitting ellipses was considered and numerically solved with general purpose methods. In this paper we present another new ellipse fitting algorithm. Our algorithm if mainly based on the steepest descent procedure with the view of ensuring the convergence of the corresponding quadratic function Q(u) to a local minimum. Numerical examples are given.

A RECENT PROGRESS IN ALGORITHMIC ANALYSIS OF FIFO QUEUES WITH MARKOVIAN ARRIVAL STEAMS

  • Takine, Tetsuya
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.807-842
    • /
    • 2001
  • This paper summarizes recent development of analytical and algorithmical results for stationary FIFO queues with multiple Markovian arrival streams, where service time distributions are general and they may differ for different arrival streams. While this kind of queues naturally arises in considering queues with a superposition of independent phase-type arrivals, the conventional approach based on the queue length dynamics (i.e., M/G/1 pradigm) is not applicable to this kind of queues. On the contrary, the workload process has a Markovian property, so that it is analytically tractable. This paper first reviews the results for the stationary distributions of the amount of work-in-system, actual waiting time and sojourn time, all of which were obtained in the last six years by the author. Further this paper shows an alternative approach, recently developed by the author, to analyze the joint queue length distribution based on the waiting time distribution. An emphasis is placed on how to construct a numerically feasible recursion to compute the stationary queue length mass function.

  • PDF

2-ENGELIZER SUBGROUP OF A 2-ENGEL TRANSITIVE GROUPS

  • Moghaddam, Mohammad Reza R.;Rostamyari, Mohammad Amin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.657-665
    • /
    • 2016
  • A general notion of ${\chi}$-transitive groups was introduced by C. Delizia et al. in [6], where ${\chi}$ is a class of groups. In [5], Ciobanu, Fine and Rosenberger studied the relationship among the notions of conjugately separated abelian, commutative transitive and fully residually ${\chi}$-groups. In this article we study the concept of 2-Engel transitive groups and among other results, its relationship with conjugately separated 2-Engel and fully residually ${\chi}$-groups are established. We also introduce the notion of 2-Engelizer of the element x in G and denote the set of all 2-Engelizers in G by $E^2(G)$. Then we construct the possible values of ${\mid}E^2(G){\mid}$.

HIGHER JET EVALUATION TRANSVERSALITY OF J-HOLOMORPHIC CURVES

  • Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.341-365
    • /
    • 2011
  • In this paper, we establish general stratawise higher jet evaluation transversality of J-holomorphic curves for a generic choice of almost complex structures J (tame to a given symplectic manifold (M, $\omega$)). Using this transversality result, we prove that there exists a subset $\cal{J}^{ram}_{\omega}\;{\subset}\;\cal{J}_{\omega}$ of second category such that for every $J\;{\in}\;\cal{J}^{ram}_{\omega}$, the dimension of the moduli space of (somewhere injective) J-holomorphic curves with a given ramication prole goes down by 2n or 2(n - 1) depending on whether the ramication degree goes up by one or a new ramication point is created. We also derive that for each $J\;{\in}\;\cal{J}^{ram}_{\omega}$ there are only a finite number of ramication profiles of J-holomorphic curves in a given homology class $\beta\;{\in}\;H_2$(M; $\mathbb{Z}$) and provide an explicit upper bound on the number of ramication proles in terms of $c_1(\beta)$ and the genus g of the domain surface.