DOI QR코드

DOI QR Code

WEAK AMENABILITY OF THE LAU PRODUCT OF BANACH ALGEBRAS DEFINED BY A BANACH ALGEBRA MORPHISM

  • Received : 2016.08.18
  • Accepted : 2017.02.13
  • Published : 2017.11.30

Abstract

Let A and B be two Banach algebras and $T:B{\rightarrow}A$ be a bounded homomorphism, with ${\parallel}T{\parallel}{\leq}1$. Recently, Dabhi, Jabbari and Haghnejad Azar (Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 9, 1461-1474) obtained some results about the n-weak amenability of $A{\times}_TB$. In the present paper, we address a gap in the proof of these results and extend and improve them by discussing general necessary and sufficient conditions for $A{\times}_TB$ to be n-weakly amenable, for an integer $n{\geq}0$.

Keywords

References

  1. G. W. Bade, P. C. Curtis, and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), no. 2, 359-377.
  2. S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 87 (2013), no. 2, 195-206. https://doi.org/10.1017/S000497271200055X
  3. P. A. Dabhi, A. Jabbari, and K. Haghnejad Azar, Some notes on amenability and weak amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 9, 1461-1474. https://doi.org/10.1007/s10114-015-4429-8
  4. H. G. Dales, F. Ghahramani, and N. Grnbk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), no. 1, 19-54.
  5. H. Javanshiri and M. Nemati, On a certain product of Banach algebras and some of its properties, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. sci. 15 (2014), no. 3, 219-227.
  6. B. E. Johnson, Derivations from $L^1$(G) into $L^1$(G) and $L^{\infty}$(G), Harmonic analysis (Luxembourg, 1987), 191198, Lecture Notes in Math., 1359, Springer, Berlin, 1988.
  7. A. R. Khoddami, n-weak amenability of T-Lau product of Banach algebras, Chamchuri J. Math. 5 (2013), 57-65.
  8. A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), no. 3, 161-175. https://doi.org/10.4064/fm-118-3-161-175
  9. M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (2007), no. 3, 277-294. https://doi.org/10.4064/sm178-3-4
  10. M. Nemati and H. Javanshiri, Some homological and cohomological notions on T-Lau product of Banach algebras, Banach J. Math. Anal. 9 (2015), no. 2, 183-195. https://doi.org/10.15352/bjma/09-2-13