• Title/Summary/Keyword: general failure model

Search Result 248, Processing Time 0.026 seconds

Stability analysis of slopes under groundwater seepage and application of charts for optimization of drainage design

  • Deng, Dong-ping;Lia, Liang;Zhao, Lian-heng
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.181-194
    • /
    • 2019
  • Due to the seepage of groundwater, the resisting force of slopes decreases and the sliding force increases, resulting in significantly reduced slope stability. The instability of most natural slopes is closely related to the influence of groundwater. Therefore, it is important to study slope stability under groundwater seepage conditions. Thus, using a simplified seepage model of groundwater combined with the analysis of stresses on the slip surface, the limit equilibrium (LE) analytical solutions for two- and three-dimensional slope stability under groundwater seepage are deduced in this work. Meanwhile, the general nonlinear Mohr-Coulomb (M-C) strength criterion is adopted to describe the shear failure of a slope. By comparing the results with the traditional LE methods on slope examples, the feasibility of the proposed method is verified. In contrast to traditional LE methods, the proposed method is more suitable for analyzing slope stability under complex conditions. In addition, to facilitate the optimization of drainage design in the slope, stability charts are drawn for slopes with different groundwater tables. Furthermore, the study concluded that: (1) when the hydraulic gradient of groundwater is small, the effect on slope stability is also small for a change in the groundwater table; and (2) compared with a slope without a groundwater table, a slope with a groundwater table has a larger failure range under groundwater seepage.

A Study on Shell Foundation Behaviour in Cohesionless Soil (사질토 지반에서 Shell 기초 거동에 대한 연구)

  • Kim, Sang-Hwan;Jung, Yong-Su;Ko, Dong-Pil;Kang, So-Ra
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.51-60
    • /
    • 2008
  • In this paper, the behaviour of shell foundation was studied. In the theoretical program, the general shallow foundation theories and failure mechanism developed by Terzaghi, Mayerhof and others were reviewed and compared. In the numerical study, the 2 and 3 dimensional FEM simulations were carried out using an uncoupled-analysis approach. The results obtained from the model test show that the bearing capacity of shell foundation was about 25% to 30% larger than that of general foundation. Due to the cases of shell angle, the maximum bearing capacity of shell foundation shows when the shell angle of foundation was $60^{\circ}$. In addition, even if the shell foundation has various advantages compared with the general foundations as described above, the practical verifications in full scale size will be necessary to use in the field and will be helpful in the technical development of other special foundations.

A Study of Stability Analysis on Unsaturated Weathered Slopes Based on Rainfall-induced Wetting (강우시 습윤에 의한 불포화 풍화토의 사면 안정 해석 연구)

  • 김재홍;박성완;정상섭;유지형
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.123-136
    • /
    • 2002
  • The infiltration of prolonged rainfall causes shallow slope failures on surficial slopes. Experiments performed on soil-water characteristic curves in weathered soils of three different types(SW, SP, SM) were used to construct a general equation for the soil-water characteristic curve. Based on this, the saturated depth by Green & Ampt model was compared with the results of numerical analyses and the range of application of Green & Ampt model was evaluated. It was found that the saturated depth occurred by infiltration on the surface of slopes has an inf1uence on the surficial stability of slopes md, the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of weathered soils was found to be a proper analysis for shallow slope failures due to rainfall.

Corrosion-Fatigue Reliability-Based Life Cycle Cost Analysis of High-Speed Railway Steel Bridges (고속철도 강교량의 부식.피로신뢰성 기반 생애주기비용 분석)

  • Jeon, Hong-Min;Sun, Jong-Wan;Cho, Hyo-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1132-1140
    • /
    • 2007
  • As it recently appears that Life Cycle Cost Analysis may be considered as new methodology for economic valuation of infrastructure many researches have been made to assess LCC(Life Cycle Cost) of each facility based on a reasonable methods. In general, LCC is composed of construction cost and expected maintenance repair cost. And especially, maintenance repair cost must be estimated to enhance the reliability through systematic and reasonable methods. However in Korea, because high speed railway steel bridges are recently constructed no direct statistical data are available for the account of the maintenance cost and then their maintenance characteristics are not linear yet. Therefore, the approach proposed in the paper utilizes a theoretical determination and degradation of the corrosion and fatigue of the bridges based on Rahgozar et al.(2006)'s model on fatigue notch factor considering into the corrosion to incorporate the corrosion effect into the fatigue strength reduction model. And then, the corresponding probability of failure is calculated in terms of the reliability index using S-N curve to formulate the fatigue limit state. Therefore, this paper proposes the minimum Life Cycle Cost through optimum maintenance plan analysis of high-speed railway steel bridges under construction. Finally, this paper reviews the proposed model in oder to confirm the applicability and feasibility by appling it to high speed railway steel bridges under construction

  • PDF

Reliability analysis of a complex system, attended by two repairmen with vacation under marked process with the application of copula

  • Tiwari, N.;Singh, S.B.;Ram, M.
    • International Journal of Reliability and Applications
    • /
    • v.11 no.2
    • /
    • pp.107-122
    • /
    • 2010
  • This paper deals with the reliability analysis of a complex system, which consists of two subsystems A and B connected in series. Subsystem A has only one unit and B has two units $B_1$ and $B_2$. Marked process has been applied to model the complex system. Present reliability model incorporated two repairmen: supervisor and novice to repair the failed units. Supervisor is always there and the novice remains in vacation and is called for repair as per demand. The repair rates for supervisor and novice follow general and exponential distributions respectively and the failure time for both the subsystems follows exponential distribution. The model is analyzed under "Head of line repair discipline". By employing supplementary variable technique, Laplace transformation and Gumbel-Hougaard family of copula various transition state probabilities, reliability, availability and cost analysis have been obtained along with the steady state behaviour of the system. At the end some special cases of the system have been taken.

  • PDF

Experimental hysteretic behavior of in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls

  • Li, Sheng-Cai;Dong, Jian-Xi;Li, Li-Feng
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.95-112
    • /
    • 2012
  • In order to analyze the experimental hysteretic behavior of the in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls (RGMACBMW), we have carried out the pseudo static testing on the six specimens of RGMACBMW. Based on the test results and shear failure characteristics, the shear force hysteretic curves and displacement envelope curves of the models were obtained and discussed. On the basis of the hysteretic curves a general skeleton curve of the shear force and displacement was formed. The restoring model was adopted to analyze the seismic behavior and earthquake response of RGMACBMW. The deformation capacity of the specimens was discussed, and the formulas for calculating the lateral stiffness of the walls at different loading stages were proposed as well. The average lateral displacement ductility factor of RGMACBMW calculated based on the test results was 3.16. This value illustrates that if the walls are appropriately designed, it can fully meet the seismic requirement of the structures. The quadri-linear restoring models of the walls degradation by the test results accurately reflect the hysteretic behaviors and skeleton curves of the masonry walls. The restoring model can be applied to the RGMACBMW structure in earthquake response analysis.

Stress path adapting Strut-and-Tie models in cracked and uncracked R.C. elements

  • Biondini, Fabio;Bontempi, Franco;Malerba, Pier Giorgio
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.685-698
    • /
    • 2001
  • In this paper, a general method for the automatic search for Strut-and-Tie (S&T) models representative of possible resistant mechanisms in reinforced concrete elements is proposed. The representativeness criterion here adopted is inspired to the principle of minimum strain energy and requires the consistency of the model with a reference stress field. In particular, a highly indeterminate pin-jointed framework of a given layout is generated within the assigned geometry of the concrete element and an optimum truss is found by the minimisation of a suitable objective function. Such a function allows us to search the optimum truss according to a reference stress field deduced through a F.E.A. and assumed as representative of the given continuum. The theoretical principles and the mathematical formulation of the method are firstly explained; the search for a S&T model suitable for the design of a deep beam shows the method capability in handling the reference stress path. Finally, since the analysis may consider the structure as linear-elastic or cracked and non-linear in both the component materials, it is shown how the proposed procedure allows us to verify the possibilities of activation of the design model, oriented to the serviceability condition and deduced in the linear elastic field, by following the evolution of the resistant mechanisms in the cracked non-linear field up to the structural failure.

Evaluation of Plugging Criteria on Steam Generator Tubes and Coalescence Model of Collinear Axial Through-Wall Cracks

  • Lee, Jin-Ho;Park, Youn-Won;Song, Myung-Ho;Kim, Young-Jin;Moon, Seong-In
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.465-476
    • /
    • 2000
  • In a nuclear power plant, steam generator tubes cover a major portion of the primary pressure-retaining boundary. Thus very conservative approaches have been taken in the light of steam generator tube integrity According to the present criteria, tubes wall-thinned in excess of 40% should be plugged whatever causes are. However, many analytical and experimental results have shown that no safety problems exist even with thickness reductions greater than 40%. The present criterion was developed about twenty years ago when wear and pitting were dominant causes for steam generator tube degradation. And it is based on tubes with single cracks regardless of the fact that the appearance of multiple cracks is more common in general. The objective of this study is to review the conservatism of the present plugging criteria of steam generator tubes and to propose a new coalescence model for two adjacent through-wall cracks existing in steam generator tubes. Using the existing failure models and experimental results, we reviewed the conservatism of the present plugging criteria. In order to verify the usefulness of the proposed new coalescence model, we performed finite element analysis and some parametric studies. Then, we developed a coalescence evaluation diagram.

  • PDF

Experimental and numerical analysis of the global behaviour of the 1:9 scale model of the Old Bridge in Mostar

  • Kustura, Mladen;Smoljanovic, Hrvoje;Nikolic, Zeljana;Krstevska, Lidija
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • Composite nature of the masonry structures in general causes complex and non-linear behaviour, especially in intense vibration conditions. The presence of different types and forms of structural elements and different materials is a major problem for the analysis of these type of structures. For this reason, the analysis of the behaviour of masonry structures requires a combination of experimental tests and non-linear mathematical modelling. The famous UNESCO Heritage Old Bridge in Mostar was selected as an example for the analysis of the global behaviour of reinforced stone arch masonry bridges. As part of the experimental research, a model of the Old Bridge was constructed in a scale of 1:9 and tested on a shaking table platform for different levels of seismic excitation. Non-linear mathematical modelling was performed using a combined finite-discrete element method (FDEM), including the effect of connection elements. The paper presents the horizontal displacement of the top of the arch and the failure mechanism of the Old Bridge model for the experimental and the numerical phase, as well as the comparison of the results. This research provided a clearer insight into the global behaviour of stone arch masonry structures reinforced with steel clamps and steel dowels, which is significant for the structures classified as world cultural heritage.

A Study on Manufacturing and Experimental Techniques for the 1/5th Scale Model of Precast Concrete Large Panel Structure (프리캐스트 콘크리트 대형판 구조물의 1/5축소모델 제작 및 실험기법 연구)

  • 이한선;김상규
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.139-150
    • /
    • 1996
  • The objective of this study is to provide the information on the manufacturing and exper- , ructures. imental techniques of small scale modeling of precast concrete(P.C.) large panel :-t The ad~~pted scale was one-fifth. 4 types of experiments were performed : nlaterial tests for model concrete and model reinforcement, compressive test of horizontal joint, shear test of vertical joint and cyclic static test of 2-story subassemblage structure. Based on the experimental results, the following conclusions are drawn : i 1) Model concrete had in general larger compressive strength than expected. (2) Model reinforcement showed less ductility if the annealing processes were performed without using vaccuum tube. 131 Failure niotles of horizontal and vertical joints were almost same for both prototype and model. But the strength of model appears to be higher than required by similitude law. (41 Hysteretic behavior of 1 /T, scale subassemblage model can be made quite similar to that of prototype if the ductility of model reinforcement and compressive strength of model concrete could be representative of those of prototype.