
 
 
 
 
International Journal of Reliability and Applications                                   
Vol. 11, No. 2, pp. 107-122, 2010 
 

 

Reliability analysis of a complex system, attended by two repairmen 
with vacation under marked process with the application of copula 

 
N. Tiwari* 

Department of Mathematics, Statistics and Computer Science 
G. B. Pant University of Agriculture and Technology, Pantnagar, India 

 

S. B. Singh 
Department of Mathematics, Statistics and Computer Science 

G. B. Pant University of Agriculture and Technology, Pantnagar, India 
 

M. Ram 
Department of Mathematics 

Graphic Era University, Dehradun, India 
 

 

Abstract. This paper deals with the reliability analysis of a complex system, which 
consists of two subsystems A and B connected in series. Subsystem A has only one 
unit and B has two units B1 and B2. Marked process has been applied to model the 
complex system. Present reliability model incorporated two repairmen: supervisor 
and novice to repair the failed units. Supervisor is always there and the novice 
remains in vacation and is called for repair as per demand. The repair rates for 
supervisor and novice follow general and exponential distributions respectively and 
the failure time for both the subsystems follows exponential distribution. The model 
is analyzed under “Head of line repair discipline”. By employing supplementary 
variable technique, Laplace transformation and Gumbel-Hougaard family of copula 
various transition state probabilities, reliability, availability and cost analysis have 
been obtained along with the steady state behaviour of the system. At the end some 
special cases of the system have been taken. 
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1. INTRODUCTION 
 

Many modern repairable complex systems are multistate, that is they and their 
elements are capable of assuming a whole range of performance levels, varying from 
perfect functioning, partial functioning to complete failure. In these systems not only the 
combination of failure events matter, but so does the sequence ordering of failures. 
Therefore, it may be the case that the data taken from any repairable complex system 
possesses more information than the time of failure. For instance, in place of just the time 
of failure, the system can have some additional information such as the type of failure, 
identity of failed component, type of repair etc. Hence, it is reasonable to model the 
system under marked process where the marks label the types of events. For example, 
these marks may be of two types, viz. the down state of the system is due to preventive or 
corrective maintenance. Here in this paper we have used marked process to model the 
system. 

Reliability works performed by Kovalenko and Smolich (2001) and Ram et al. (2008)  
for complex repairable systems concentrated on one repairman without giving any 
attention to two repairmen. Though Kovalenko and Smolich (2001) and Goel and Gupta 
(1985) while analyzing the complex system incorporated the concepts of two repairmen 
but without giving any thought for vacations of repairman. Traditionally it is expected that 
the repairman is always available but practically it has been observed that the repairman 
may not be a full time employee of the organization. He is busy somewhere else doing 
some other part time job and called for repair as per requirements. Hu and Li (2009)  
analyzed a three unit system with vacation and priority but they did not take into account 
the case of two repairmen. Repairman is one of the essential parts of any repairable system 
and can affect the economy of the system directly or indirectly on the basis of his skills, 
efficiency and availability. His availability also plays key role in determining the 
reliability measures of a system. 

Keeping above facts in view unlike many other reliability models, in the present work 
special attention has been paid to reliability modelling of a complex system incorporating 
two repairmen with different skills and availability. Here complex system considered 
consists of two subsystems A and B arranged in series. Subsystem A has only one unit 
while B has two identical units B1 and B2 in which B2 is in hot standby with B1. B can fail 
in two ways viz. partially and catastrophically. System A has only two states: good and 
failed while B can be in either of the three states namely good, degraded and failed. Partial 
failure brings subsystem B to the state of reduced efficiency and hence the whole system. 
On the other hand in case of catastrophic failure the subsystem B fails completely which 
leads to the complete breakdown of the system. Further, the system fails completely if 
subsystem A fails or both the units of subsystem B fail. In the present study it has been 
assumed that the entire system is attended by two repairmen to avoid the undesirable 
delays in repair. First repairman (supervisor) remains with the system and the second 
repairman (novice) always in vacation who is called for repair as per requirements. It is 
further assumed that the supervisor is skilled to repair both subsystems A and B whereas 
novice is good in repairing subsystem B only. Also, whenever there is a failure in a unit of 
subsystem B supervisor starts repairing it but if at the same time there occurs any failure 
in other unit of B then novice is called for repairing. The system is under “Head of line 
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repair discipline” i.e. first come first get policy. However since the system is under 
marked process the possibility of more than one type of repairs cannot be ruled out and 
when this possibility exists the reliability of the system can be analyzed with the help of 
copula (Nelson, 2006). The copula approach allows us to incorporate two different 
distributions in repair simultaneously hence overcome some of the well known limitations 
of traditional methods. Here in the present system the repair from state S1 to S0 follows 
two types, i.e. exponential and general. Also the joint probability distribution of repairs 
follows Gumbel-Hougaard copula. Failure rates are assumed to be constant whereas the 
repairs follow general and exponential distribution respectively. The following 
characteristics of the system have been analyzed: 
(1)   Transition state probabilities of the system. 
(2)   Asymptotic behaviour of the system. 
(3) Various measures such as reliability, availability, M.T.T.F. analysis and cost 

effectiveness of the system. 
 

At last, we also present a numerical example to demonstrate the applications of the 
complex system under study. 

 
 

2. ASSUMPTIONS 
 

(1) Initially the system is in good state. 
(2) Subsystems A and B are connected in series. 
(3) Subsystem A has constant failure rate and two states good and failed. 
(4) Each unit of the subsystem B has constant failure rate and three states good, 

degraded and failed. 
(5) System is under marked process. 
(6) Repairs done by the supervisor follow general time distribution and repairs done 

by novice follow exponential time distribution. There exist two types of repair 
from S1 to S0 state one is general and other is exponential. 

(7) Subsystem A can be repaired by supervisor only. 
(8) System is under head of line repair discipline (first come first served) it means 

that if at any instant the subsystem B is under repair and at the same time there 
occur any failure in subsystem A then repair of subsystem B is continued and 
repair of subsystem A is undertaken only when the repair of B has completed. 

(9) After repair the system is as good as new. 
(10) Joint probability distribution of repair rates, where repair is done by supervisor 

and novice follows Gumbel-Hougaard family of copula. 
 
 

3. STATE SPECIFICATION 
 
G = Good state, F = Failed state, D = Degraded state, FR = Failed under repair, 
DR = Degraded under repair,  
FRv = Failed, one unit is under repair and novice is in vacation 
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States State of subsystem A Subsystem B number of good units System state 
S0 G 2 G 
S1 F 2 FR 
S2 G 0 FR 
S3 G 1 DR 
S4 F 1 FR 
S5 G 0 FRv 
S6 G 0 FR 

 
Figure 3.1. State specification chart 

 

 

 

Figure 3.2. State transition diagram 
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4. NOTATIONS 
 

Aλ                  Failure rate of subsystem A. 

CP λλ ,            Failure rates of subsystem B for partial and catastrophic failures for    
                        both the units.          

)( riφ        Repair rate of supervisor. 
)( riψ         Repair rate of novice. 

                        If i = A then r = x, if i = B then r = y and if i = C then r = z. 
x                      Elapsed repair time for the subsystem A. 
y, z                  Elapsed repair times for the partial and catastrophic failures  
                        respectively in subsystem B. 
η, u                  Vacation rate and variable for vacation. 
Pi (t)                Probability that the system is in Si state at instant t for i = 1 to i = 6. 

)(sPi                Laplace transform of Pi (t). 
P4(y, t)            Probability density function that at time t the system is in failed state  
                       S4 and the system is under repair, elapsed repair time is y. 
E p (t)              Expected profit during the interval (0, t]. 
K1, K2             Revenue per unit time and service cost per unit time respectively. 
 
If )(1 yu Pφ= , )(2 yu Pψ= then the expression for the joint probability according to 
Gumbel-Hougaard family of copula is given as 

       ]/1}))(log())(log{(exp[)2,1( θθψθφθ yPyPuuC −+−−=
     (4.1)
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5. FORMULATION OF MATHEMATICAL MODEL 
 

By probability considerations and continuity arguments, we obtain the following set 
of integro-differential equations governing the behaviour of the system. 
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Boundary conditions 
)(0),0(1 tPAtP λ=                                                 (5.8) 

)(0),0(2 tPCtP λ=                                                (5.9) 

)(02),0(3 tPPtP λ=                                              (5.10) 

0),0(4 =tP                                                     (5.11) 
),(3),,0(5 tyPptuP λ=                                           (5.12) 

),,(5)(),0(6 tuyPutP η=                                          (5.13)
 Initial condition 

0)0(0 =P , and other state probabilities are zero at t =0                  (5.14) 
 
 

6. SOLUTION OF THE MODEL 
 

Taking Laplace transformation of equations (5.1-5.13) and using (5.14), we get 
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Boundary conditions 
)(0),0(1 sPAsP λ=                                                     (6.8) 

)(0),0(2 sPCsP λ=                                                  (6.9) 

)(02),0(3 sPPsP λ=                                                 (6.10) 

0),0(4 =sP                                                         (6.11) 

),(3),,0(5 syPPsuP λ=                                             (6.12) 

),,(5)(),0(6 suyPusP η=                                            (6.13) 

Solving equations (6.1-6.7) with the help of equations (6.8-6.13) one can obtain the 

following transition state probabilities: 
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Also it is noticeable that 
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7. ASYMPTOTIC BEHAVIOUR OF THE SYSTEM 
 

Using Able’s lemma 
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where 
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8. PARTICULAR CASES 
 

(1) When catastrophic failure does not occur in the subsystem B 
In this case the result can be derived by putting 0=Cλ  in equations (6.14-6.23), 

Laplace transformation of various state probabilities are as follows: 
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(2) When repair follows exponential distribution 
In this case the result can be derived by putting  

)(
)(

)(,
]/1}))(log(){(exp[

]/1}))(log(){(exp[
)( yPs

yPs
P

S
xAxs

xAx
s

x
S

φ
φ

φθθφθ

θθφθ

φ +
=

−+−−+

−+−−
=  

]/1}))(log())(log{(exp[

]/1}))(log())(log{(exp[
)(

θθφθψφ

θθφθψφ
ψ yPyPPs

yPyPPs
y

S
−+−−++

−+−−+
=  

in equations (6.14-6.23), we get 

  )(2
)(0 sD

PAsP
λλ +

=   
]/1}))(log(){(exp[

1
)(2

)(
)(1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−−+

+
=

θθφθ
λλλ

xAxssD
PAAsP

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+

+
=

)(
1

)(2

)(
)(2 zCssD

PACsP
φ

λλλ

,
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++
+

= )(
1

)(2

)(2
)(3 yPPAssD

PAPsP
φλλ

λλλ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++
−

+
= )(

1
)(2

2
)(

1
)(2

2
)(4 yPPAssD

PA
yPssD

PAsP
φλλ

λλ
φ

λλ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++++
+

= )()(2
1

)(2

)(22
)(5 yPuPAssD

PAPsP
φηλλ

λλλ

 
)(3

1
)(2

))((22
)(6 ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

++++
+

=
yuPAssD

PAuPsP
ψηλλ

λληλ

 
0

}))(3(exp{
0

             

)(22
)(

)(
)(

)(
 

2
             

)(
)(2

 )(
)(

              

]/1}))(log(){(exp[

]/1}))(log(){(exp[
2)(2

∫−+++−∫
∞

−
+++

−
++

−

+++
−

+
−

−+−−+

−+−−
−+++=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

y
dyyyuPAsy

uPyPPAs
yP

yPs
yP

PA
PA

yPPAs
yPP

zCs
zCC

xAxs

xAxA
CPAssD

ψηλλψ

ηλ
φλλ

φ
φ

φ
λλ

λλ

φλλ
φλ

φ
φλ

θθφθ

θθφθλ
λλλ

 ]/1}))(log())(log{(exp[)(
]/1}))(log(){(exp[)(

θθφθψφψ

θθφθφ
yPyPyPy

xAxx
−+−−+=

−+−−=

 
 
 

9. NUMERICAL COMPUTATION 
 

(1) Availability analysis 
Let the vacation rate be η(u) = 0.20, failure rates of subsystem A and B for partial 

and catastrophic failures be λA = 0.20, λP = 0.15, λC = 0.05, repair rates be ФP = ФC = 
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ФA = ψP =1, θ = 1 and x = y = z = 1. Also let the repair follows exponential distribution 
i.e. 
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Putting all these values in equation (6.14) and taking inverse Laplace transformation, we 
get 
 
Pup= 0.09696483693 e(-3.015211563 t)-0.1478308979 e(-1.511354028 t)+.1831230754e(-1.162033724 t)  

       +0.0004142060614 e(-0.8841029318 t)+0.8673287795 e(-0.02063108694t)                       (9.1) 
 
Now in equation (9.1) setting t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, one can obtain Table 

9.1 and correspondingly Figure 9.1 which shows the variation of availability with respect 
to time. 

 
(2) Reliability analysis 

Let failure rates of subsystem A and B for partial and catastrophic failures be λA = 

0.25, λP = 0.10, λC = 0.05, repair rates be ФP = ФC = ФA = ψP = 0, θ = 1 and x = y = z = 1. 

Also let the repair follows exponential distribution i. e.
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Putting all these values in equation (6.14) and taking inverse Laplace transform and 
varying time, one can obtain Table 9.2. Also Figure 9.2 shows how reliability varies with 
respect to time in this case. 

 
(3) M.T.T.F. analysis 
 

Suppose that the repair follows exponential distribution, we have  

)(
)(

)( 

,
)(

)(
)( ,

]/1}))(log(){(exp[

]/1}))(log(){(exp[
)(

yCs
yCs

C
S

yPs
yPs

P
S

xAxs

xAx
s

x
S

φ
φ

φ

φ
φ

φθθφθ

θθφθ

φ

+
=

+
=

−+−−+

−+−−
=

 

M.T.T.F. = )(
0

lim supP
s →  
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(a) Setting ФA = ФC = ФP = ψA = ψP = 0, λP = 0.10, λC =0.05, x = y = z =1, θ = 1 and 
varying λA as 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, one can obtain Table 9.3 
which demonstrates variation of M.T.T.F. with respect to λA. 
(b) Setting ФA = ФC = ФP = ψA = ψP = 0, λA = 0.25, λC = 0.05, x = y = z =1, θ = 1 and 
varying λP as 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, one can obtain Table 9.4 
which demonstrates variation of M.T.T.F. with respect to λP. 
(c) Setting ФA = ФC = ФP = ψA = ψP = 0, λA = 0.25, λP = 0.10, x = y = z =1, θ = 1 and 
varying λC as 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, one can obtain Table 9.5 
which demonstrates variation of M.T.T.F. with respect to λC. 
In cases (a), (b) and (c), one can obtain Figure 9.3, 9.4 and 9.5 respectively which 
represent the variation of M.T.T.F with respect to λA, λP and λC respectively. 

(4) Cost analysis  
 

 Let the vacation rate be η(u) = 0.20, failure rates of subsystem A and B for partial 
and catastrophic failures be λA = 0.25, λP = 0.15, λC = 0.05, repair rates be ФP = ФC = 
ФA = ψP =1 and x = y = z = 1. Also if the repair follows exponential distribution then 
from equation (6.14), on putting all these values and taking inverse Laplace transform one 
can obtain equation (9.1). Let the service facility be always available, then expected profit 
during the interval (0, t] is given by 

∫ −=
t

tKdttupPKtPE
0 2)(1)(  

where K1 and K2 are the revenue per unit time and service cost per unit time respectively, 
we get 

E P (t) = K1 [-0.03215855170 e(-3.015211563 t)+0.09781354677 e(-1.511354028 t) 
                 -1.575884345 e(-1.162033724 t)-0.004685043410 e(-0.8841029318 t)-42.03989746 
                 e(-0.02063108694t)+42.13229940]-K2t                                                                     (9.2) 
 
Keeping K1 = 1 and varying K2 at 0.1, 0.2, 0.3, 0.4, 0.5 in equation (9.2), one can obtain 
Table 9.6 which is depicted by Figure 9.6. 

 
Table 9.1. Time vs. Availability        Table 9.2. Time vs. Reliability 
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Table 9.3. Time vs. M.T.T.F.  Table 9.4. Time vs. M.T.T.F.  Table 9.5. Time vs. M.T.T.F. 

    

 
 

    

Figure 9.1. Time vs. Availability                    Figure 9.2. Time vs. Reliability 

 

    

Figure 9.3. λA  vs. M.T.T.F.              Figure 9.4. λP vs. M.T.T.F. 
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Figure 9.5. λC vs. M.T.T.F. 

Table 9.6. Time vs. expected profit 
Time EP(t) 
 K2=0.1 K2=0.2 K2=0.3 K2=0.4 K2=0.5 
0 0 0 0 0 0 
1 0.82135184 0.72135184 0.62135184 0.52135184 0.42135184 
2 1.58093814 1.38093814 1.18093814 0.98093814 0.78093814 
3 2.31168949 2.01168949 1.71168949 1.41168949 1.11168949 
4 3.02113173 2.62113173 2.22113173 1.82113173 1.42113173 
5 3.71244158 3.21244158 2.71244158 2.21244158 1.71244158 
6 4.38703384 3.78703384 3.18703384 2.58703384 1.98703384 
7 5.04562110 4.34562110 3.64562110 2.94562110 2.24562110 
8 5.68865644 4.88865644 4.08865644 3.28865644 2.48865644 
9 6.31649917 5.41649917 4.51649917 3.61649917 2.71649917 
10 6.92947313 5.92947313 4.92947313 3.92947313 2.92947313 

 

 
Figure 9.6. Time vs. expected profit 
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10. RESULTS AND DISCUSSION 
 

It can be easily concluded from Figure9.1 that when η(u) = 0.20, λA = 0.25, λP = 0.15 
and λC = 0.05, then availability of the system initially decreases rapidly with respect to 
time and later on stabilizes at value 0.7. Also examination of  Figure 9.2 reveals that 
reliability of the system decreases with the increment in time.  

When revenue cost per unit time K1 kept at value 1 and service cost K2 varied at 
values 0.1, 0.2, 0.3, 0.4, 0.5, Figure9.6 is obtained. This graph draws an important 
conclusion that increasing service cost leads decrement in expected profit. The highest and 
lowest values of expected profit are obtained to be 6.92 and 0.421 respectively. Expected 
profit decreases with the increment in K2.  

Further Figure 9.3, 9.4 and 9.5 represents how M.T.T.F. of the system changes with 
respect to λA, λP and λC respectively when other parameters have been kept constant. 
M.T.T.F. varies from 5.71 to 1.04, from 3.14 to 1.22 and from 2.80 to 1.1 with respect to 
time in the cases of λA, λP and λC respectively. By observing these graphs one can easily 
conclude that M.T.T.F. of the complex system decreases as the value of λA, λP and λC 
increases. One remarkable observation is that M.T.T.F depends more on λA in comparison 
to λP and λC. 
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