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Abstract. This paper deals with the reliability analysis of a complex system, which
consists of two subsystems A and B connected in series. Subsystem A has only one
unit and B has two units B, and B,. Marked process has been applied to model the
complex system. Present reliability model incorporated two repairmen: supervisor
and novice to repair the failed units. Supervisor is always there and the novice
remains in vacation and is called for repair as per demand. The repair rates for
supervisor and novice follow general and exponential distributions respectively and
the failure time for both the subsystems follows exponential distribution. The model
is analyzed under “Head of line repair discipline”. By employing supplementary
variable technique, Laplace transformation and Gumbel-Hougaard family of copula
various transition state probabilities, reliability, availability and cost analysis have
been obtained along with the steady state behaviour of the system. At the end some
special cases of the system have been taken.
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1. INTRODUCTION

Many modern repairable complex systems are multistate, that is they and their
elements are capable of assuming a whole range of performance levels, varying from
perfect functioning, partial functioning to complete failure. In these systems not only the
combination of failure events matter, but so does the sequence ordering of failures.
Therefore, it may be the case that the data taken from any repairable complex system
possesses more information than the time of failure. For instance, in place of just the time
of failure, the system can have some additional information such as the type of failure,
identity of failed component, type of repair etc. Hence, it is reasonable to model the
system under marked process where the marks label the types of events. For example,
these marks may be of two types, viz. the down state of the system is due to preventive or
corrective maintenance. Here in this paper we have used marked process to model the
system.

Reliability works performed by Kovalenko and Smolich (2001) and Ram et al. (2008)
for complex repairable systems concentrated on one repairman without giving any
attention to two repairmen. Though Kovalenko and Smolich (2001) and Goel and Gupta
(1985) while analyzing the complex system incorporated the concepts of two repairmen
but without giving any thought for vacations of repairman. Traditionally it is expected that
the repairman is always available but practically it has been observed that the repairman
may not be a full time employee of the organization. He is busy somewhere else doing
some other part time job and called for repair as per requirements. Hu and Li (2009)
analyzed a three unit system with vacation and priority but they did not take into account
the case of two repairmen. Repairman is one of the essential parts of any repairable system
and can affect the economy of the system directly or indirectly on the basis of his skills,
efficiency and availability. His availability also plays key role in determining the
reliability measures of a system.

Keeping above facts in view unlike many other reliability models, in the present work
special attention has been paid to reliability modelling of a complex system incorporating
two repairmen with different skills and availability. Here complex system considered
consists of two subsystems A and B arranged in series. Subsystem A has only one unit
while B has two identical units B; and B, in which B; is in hot standby with B;. B can fail
in two ways viz. partially and catastrophically. System A has only two states: good and
failed while B can be in either of the three states namely good, degraded and failed. Partial
failure brings subsystem B to the state of reduced efficiency and hence the whole system.
On the other hand in case of catastrophic failure the subsystem B fails completely which
leads to the complete breakdown of the system. Further, the system fails completely if
subsystem A fails or both the units of subsystem B fail. In the present study it has been
assumed that the entire system is attended by two repairmen to avoid the undesirable
delays in repair. First repairman (supervisor) remains with the system and the second
repairman (novice) always in vacation who is called for repair as per requirements. It is
further assumed that the supervisor is skilled to repair both subsystems A and B whereas
novice is good in repairing subsystem B only. Also, whenever there is a failure in a unit of
subsystem B supervisor starts repairing it but if at the same time there occurs any failure
in other unit of B then novice is called for repairing. The system is under “Head of line
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repair discipline” i.e. first come first get policy. However since the system is under
marked process the possibility of more than one type of repairs cannot be ruled out and
when this possibility exists the reliability of the system can be analyzed with the help of
copula (Nelson, 2006). The copula approach allows us to incorporate two different
distributions in repair simultaneously hence overcome some of the well known limitations
of traditional methods. Here in the present system the repair from state S; to S, follows
two types, i.e. exponential and general. Also the joint probability distribution of repairs
follows Gumbel-Hougaard copula. Failure rates are assumed to be constant whereas the
repairs follow general and exponential distribution respectively. The following
characteristics of the system have been analyzed:
(1) Transition state probabilities of the system.
(2) Asymptotic behaviour of the system.
(3) Various measures such as reliability, availability, M.T.T.F. analysis and cost
effectiveness of the system.

At last, we also present a numerical example to demonstrate the applications of the
complex system under study.

2. ASSUMPTIONS

(D Initially the system is in good state.

(2) Subsystems A and B are connected in series.

3) Subsystem A has constant failure rate and two states good and failed.

4) Each unit of the subsystem B has constant failure rate and three states good,
degraded and failed.

(5) System is under marked process.

(6) Repairs done by the supervisor follow general time distribution and repairs done

by novice follow exponential time distribution. There exist two types of repair
from S; to S state one is general and other is exponential.

(7 Subsystem A can be repaired by supervisor only.

(8) System is under head of line repair discipline (first come first served) it means
that if at any instant the subsystem B is under repair and at the same time there
occur any failure in subsystem A then repair of subsystem B is continued and
repair of subsystem A is undertaken only when the repair of B has completed.

9) After repair the system is as good as new.

(10)  Joint probability distribution of repair rates, where repair is done by supervisor
and novice follows Gumbel-Hougaard family of copula.

3. STATE SPECIFICATION

G = Good state, F = Failed state, D = Degraded state, Fr = Failed under repair,
Dg = Degraded under repair,
Fry = Failed, one unit is under repair and novice is in vacation
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Figure 3.1. State specification chart
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4. NOTATIONS

Failure rate of subsystem A.

Failure rates of subsystem B for partial and catastrophic failures for
both the units.
Repair rate of supervisor.

Repair rate of novice.
Ifi=Athenr=x,ifi=Bthenr=yandifi=Cthenr=z.
Elapsed repair time for the subsystem A.

Elapsed repair times for the partial and catastrophic failures
respectively in subsystem B.

Vacation rate and variable for vacation.

Probability that the system is in S; state at instant t fori=1to i =6.
Laplace transform of P; (t).

Probability density function that at time t the system is in failed state
S, and the system is under repair, elapsed repair time is y.

Expected profit during the interval (0, t].

Revenue per unit time and service cost per unit time respectively.

Ifu; = ¢p(y), Uy =¥ p(y) then the expression for the joint probability according to

Gumbel-Hougaard family of copula is given as

Couy.uy) =exp[—{(-logp(»)? +(~logy p(»)?31/0] @1)

n
Sn (s)= (j)n(x) exp[—sx —Zj;n(x)dx]dx

5. FORMULATION OF MATHEMATICAL MODEL

By probability considerations and continuity arguments, we obtain the following set
of integro-differential equations governing the behaviour of the system.

d

{%m 4+ +2/1P}P0(t) =o(jjexp[—{(—x)‘9 +(~logg 4(x))? 1/ O1P (x,1)dx

+°§¢C<z>P2 (z,t)dz+°§¢p<y)P3<y,t)dy
+°§exp[—{(—log://p(y»9+(—1og¢p<y>)9}1/ 0P (v, 1)dy

+ [9p(IPy (1)
0 (5.1)
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2 D renpli(-00 + (- Togd 4 ()OO Ry ) =0

{gt +¢C(z)}P2(z £)=0
0 40 43 4ap+dn(3)|Pr(3,0)=0
at dy ATApTop W) 3L,
{gt +¢P(y)}P4(y,t) ApP3(y,0)
{gt a+77(1,¢)}Ds(y,1,¢ =0

el lozy p()? + (log (1111 Po(r =0
Boundary conditions
P (0,6)=2 4Fy()
Py(0,)=0
P6(Oat):77(u)P5(y’u:t)

Initial condition
PO (0) =0, and other state probabilities are zero at t =0

6. SOLUTION OF THE MODEL

Taking Laplace transformation of equations (5.1-5.13) and using (5.14), we get

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)
(5.7)

(5.8)
(5.9)
(5.10)
(5.11)
(5.12)
(5.13)

(5.14)

s+ A4+ A0 +2/1P]l70(s) = 1+°joexp ()0 +(~logg (x)?V/ O1P, (x,5)dx
0

°§¢C<z)172<z,s>dz+°§¢P@>F3(y,s>dy
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+°§exp[—{<—logwp(y>)9+(—log¢p@))9}1/ O1P(y,s)dy

o0 P
+ (I) Pp(NEY (v, s5)dy
(6.1)
{s + 2 texpl-{(-0)0 + (~logg 4 ()31 HJ}FI(W ~0
6.2)
a —

S+—+¢ (z)}P (z,5)=0

{ &z ¢ 2 (6.3)
{S+§+ZA +2p +¢P(y)}P_3(y,s) )
Y (6.4)
{s +2igp (y)ﬁ(y, =2 P (:9)

Y (6.5)

{s +%+77(u)}§(y,u,s) =0
(6.6)

{s+§+exp{—{(—1og v p()0 +(~log gp (10)011/0 ]}E(y,s) ~0
(6.7)
Boundary conditions o o

PI(O,S) =4y By (s) (6.3)
Py (0,5)=Ac Py (s) (6.9)
Py(0,5)=2ApFy(s) (6.10)
P4(0,5)=0 (6.11)
Ps(0,u,5) = Ap Py(1,5) (6.12)
Py (0,5) =17() Ps (y,u,5) (6.13)

Solving equations (6.1-6.7) with the help of equations (6.8-6.13) one can obtain the
following transition state probabilities:

_ Ayg+A
Py(s) = “;) (S)P (6.14)
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_ =545 ()]_
PI(S)Z;LA X Po(S)
(6.15)
1- S¢ )]
(6.16)
1-S, (s+A 4+Ap)
— $p ATAP
P3(S)2/1p|: +1A +/1P Po(S)
(6.17)
7 24 42p 1 S¢P(S)P_ 24 4Ap 1- S¢P(S+/1A+/1P)
4=7257 A (L W ) Iy g "0
(6.18)
1-S, (2s+A 4+ Ap+nu))
— ¢ p AT4AP
P5(S)2/1P[ 25+ A 4+ Ap +n(u) Py(s)
(6.19)
=22 5 “ 1- Sl//y(3s+ﬂA +Ap +n(u)) )
6\ = SArmit 35+ 44 +Ap +n(u) 0%
L L (6.20)
D(S):S+2,A+ﬂc+2/1p—/1AS¢ (S)_ECS¢C(S)
X
~2ApSy s+ 2+ 2p)
24 atp S S . A+
1A+/1P{ ¢ p " Sg pl T Aat P)}
y
—-24p U(”)(I)WPGXP{—(3S+/1A +Ap +77(u))y—(f)wydy}
(6.21)
By = exp[~{(-x)0 +(~log¢ 4 (x))?}1/0] (6.22)

vy, =¢ p(») +expl~{(logy p(»)¥ + (~logdp N}V OLyp =v -4 p(1) (6.23)

I_’up =P_0(S)+P_3(s)
Ay +A 22
_GAytip) L 2Ap
D(S) S+/1P +/1A

1-Sgp(s+24+2p)} (6.24)
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Pdown =Py (s)+ Py (s)+ Py (s)+ Ps(s)+ Pg (s)
1-S, (s) 1=S, ()| 24,4, |1- (s)
4 ¢ ¢
- ;LA sx +/1C SC +/1Azi/11; SP

2’1A/1P 1—S¢P(s+iA+/1P) 1—S¢P(2s+;tA+iP+77(u))

A +A S+A+A +2/1P2 25+, +Ap +1(u)
AP AP AP
1-S,, Bs+A,+Ap+nu)
+2/1P277(u) vy AP AN +4p
3s+/1A+/1P+77(u) D(s)
(6.25)
Also it is noticeable that
Pup +Pdown =1/s (6.26)

7. ASYMPTOTIC BEHAVIOUR OF THE SYSTEM

Using Able’s lemma
lim {sF(s)}= lim F(¢)=F(say)
s—0 t—>
in equations (6.26) and (6.27) we get the following time independent probabilities

_ o Gytap| 2p o —

(7.1)

_ Ay+2p)| — U,
Pdown ——A_ P2\ 5 3 wa M, +—ATP 3f
down =—50y | *aMp . T4 ¢c+,1A+,1P ¢ p

24 A, (1754 (A +2p)

1—@P(,1A+,1P+q(u))
P
/1A+/1P 1A+1P

/1A+/1P+77(u)

. 2/1P277(u)[1 ~Sy (A +Ap+ n(u))J

Ay+adp+nu)

(7.2)
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where
D(0) = lim D(s)
s—0

- 1-8, (s)
M. = lim D
¢ P s—0 N

8. PARTICULAR CASES

(1) When catastrophic failure does not occur in the subsystem B
In this case the result can be derived by putting 1 c= 0 in equations (6.14-6.23),

Laplace transformation of various state probabilities are as follows:
P s) Ay+p
S)=—————
0 Dy(s)

2y +2p)|178g ()
Dl(s) s

Py (5)=0

o 2p(h A
Py(s)= pAat2p)
Dy (s)

1-54 »©

N

Pi(s)=

1—$P(S+AA+AP)
S+ﬂA +/IP

1—$P(s+/1A+/1P)
s+/1A+/1P

24 A
Py (s) D,0) .

D1 (s)

1—$P(2S+AA+,1P+77(M))]

24p% (A4 +Ap)
DI(S)

Ps(s)= 25+ A4+ Ap +n(u)

2/1132’7(“)(/114 +2p) 1_Sl//y(3s+;tA +Ap +n(u))

Fe(s)= Dy(s) 3s+4 4 +Ap+nu)

Dy(s)=s+Ay+22p=AySy ()=24pSy (s+2,+4p)
22a%p (5 S5 (s+A +Ap)t—24p2
7 A S =g s g+ Ap)| =220

00 Y

(I)l//yGXP{—(3S+/1A +/1p+77(u))y—(J)t//ydy}

¢ =exp[~{(-0)? +(~logg 4 (x))0}1/]
v, =6 p()+expl~{(~logy p(»)f +(~loggp(»)?}1/]
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(2) When repair follows exponential distribution
In this case the result can be derived by putting

_ exp[{(-07 +(-logg (%3101 _ p(»)
Sp, 9= 0 g7a, 56 p9=

¥ svexpl(-0f +(-logg (2110 PP s+op(Y)
oy tprexplilogy p()’ +(-loggp() 0]

(
Vo segprexpl-i(-logy p()f +(~loggp (1)1 0]
in equations (6.14-6.23), we get

_ Ay+Ap — A4 A +Ap)

_tAT4P Ayt p

PO(S) DQ(S) Pl ) Dz(s)
/1C(/1A+/1P)
DQ(S)

1
s+exp[~{(—x)0 +(~log ¢ , (x))0}1/ 0 ]]
—  22p(A +4p)
P3(S)_ Dz(s)

Dy (s) s+A 4+ Ap+dp(y)

1
s+0(2)
ZEAAP 1
Dz(s) s+op(y)
24p% (A4 +2p) 1

DZ(S) 25+ A4+ Ap+n)+Pp(y)
22 p20u)(A 4 +Ap)
D2(S)

Py(s)=

1
S+/1A +lP +¢P(y)‘|

b

Py(s)=

Ps(s)=

1
3s+/1A+/1P+77(u)+1//y
A g exp[~{(-x)0 + (~log ¢ ,(x))?}1/0]
s+exp[—{(-x)7 + (- log ¢ , (x))0}1/0]
CAcdc(z)  22pp(y)

Stéc(2) s+A,+2p+dp(y)
 244p { 6p(») bp ()
Aqgtip s+ép(y) s+d,+Ap+op(y)

Pg(s)=

}—2/1})277(14)

0 Yy
(I)l/fy exp{-GBs+1,+4p +77(u))y—éwydy}

#(x) =exp[—{(—x)¥ +(~log ¢ 4 (x))7}1/0]
vy =4 p(y) +expl—{(~logy p(»)0 +(~loggp (1) ?}1/0]

9. NUMERICAL COMPUTATION

(1) Availability analysis
Let the vacation rate be n(u) = 0.20, failure rates of subsystem A and B for partial
and catastrophic failures be AA = 0.20, AP = 0.15, AC = 0.05, repair rates be ®P = ®C =
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DOA=yP=1,0=1and x =y =z = 1. Also let the repair follows exponential distribution
ie.

5 o A0 e Clogg, N g
P2 s replt(-0? + (Clogg (0} 0) T OPT s+ dp0)”
- _ ¢C(J/)

Spc= s+dc()

Putting all these values in equation (6.14) and taking inverse Laplace transformation, we
get

Pyp= 0.09696483693 ¢ 1211331.0.1478308979 11294028 01 18312307541 102037240
+0.0004142060614 e 088410293180, () 8673287795 (0020631086949 9.1

Now in equation (9.1) setting t =0, 1, 2, 3,4, 5, 6, 7, 8, 9, 10, one can obtain Table
9.1 and correspondingly Figure 9.1 which shows the variation of availability with respect
to time.

(2) Reliability analysis
Let failure rates of subsystem A and B for partial and catastrophic failures be Ay =
0.25, Ap=0.10, Ac= 0.05, repair rates be ®p= Dc=Dp=yp=0,0=1andx=y=z=1.

Also let the repair follows exponential distribution i. e.

T (e expl-t(0)” + (logg VY gp)
P s rexpl—t(—0? + (-logg ,(0)0}1/0) PP s Hep0)
o _ ¢C(y)

Spc9)= s+800)

Putting all these values in equation (6.14) and taking inverse Laplace transform and
varying time, one can obtain Table 9.2. Also Figure 9.2 shows how reliability varies with
respect to time in this case.

(3) M.T.T.F. analysis

Suppose that the repair follows exponential distribution, we have

5 (g S0 < Clogd T gp0)
P2 s vexpl-t(-n? +(-logg ()P /O) IR s+ p0)
- _ ¢C(y)

S¢C(S)_s+¢c(y)

M.T.T.F.= lim Pup(s)
s—0
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(a) Setting ®A = DOC =DP=yA =yP=0,AP =0.10, A\C=0.05, x=y=2z=1,0=1 and
varying AA as 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, one can obtain Table 9.3
which demonstrates variation of M.T.T.F. with respect to AA.

(b) Setting DA =DPC=DPP=yA=yP=0,AA=0.25AC=0.05,x=y=2z=1,0=1 and
varying AP as 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, one can obtain Table 9.4
which demonstrates variation of M.T.T.F. with respect to AP.

(c) Setting PA=DPC=PP=yA=yP=0,AA =025 AP=0.10,x=y=z=1,0=1 and
varying AC as 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, one can obtain Table 9.5
which demonstrates variation of M.T.T.F. with respect to AC.

In cases (a), (b) and (c), one can obtain Figure 9.3, 9.4 and 9.5 respectively which
represent the variation of M.T.T.F with respect to AA, AP and AC respectively.

(4) Cost analysis

Let the vacation rate be n(u) = 0.20, failure rates of subsystem A and B for partial
and catastrophic failures be AA = 0.25, AP = 0.15, AC = 0.05, repair rates be ®P = ®C =
DA =yP =1 and x =y = z = 1. Also if the repair follows exponential distribution then
from equation (6.14), on putting all these values and taking inverse Laplace transform one
can obtain equation (9.1). Let the service facility be always available, then expected profit
during the interval (0, t] is given by

t
Ep(t)= Kl(j)Pup (t)dt — Kt

where K; and K, are the revenue per unit time and service cost per unit time respectively,
we get
E p(t) = K, [-0.03215855170 013211303010 09781354677 2113340280
-1.575884345 119295372490 004685043410 41218942 03989746
e 0203090142 13229940]-K,t (9.2)

Keeping K1 =1 and varying K2 at 0.1, 0.2, 0.3, 0.4, 0.5 in equation (9.2), one can obtain
Table 9.6 which is depicted by Figure 9.6.

Table 9.1. Time vs. Availability Table 9.2. Time vs. Reliability

Time Pup Time Pup

0 1.000000000 0 1.000000000

1 8792207761 1 0.7374072327
2 8433013232 2 0.5394872580
3 8193350997 3 0.3922069455
4 8000434892 4 0.2836841908
5 7827956429 5 0.2043369251
6 7665010503 6 0.1466795483
7 7507466059 7 0.1049923209
8 7353831278 8 0.07497487060
9 7203560351 9 0.05343317031
10 7056431166 10 0.03801719556
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Table 9.3. Time vs. M.T.T.F. Table 9.4. Time vs. M.T.T.F. Table 9.5. Time vs. M.T.T.F.

+
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a MTTF e MTTF e MTTF
10 5714285714 10 3.142857142 10 2.857142856
20 3.703703704 20 2.698412699 20 2417582417
30 2727272727 30 2323232323 30 2.095238095
A0 2153846154 40 2.027972028 40 1.848739495
50 1.777777777 50 1.794871795 50 1.654135338
60 1.512605042 60 1.607843137 60 1.496598693
70 1.315789474 70 1.455108359 70 1.366459627
80 1.164021164 80 1.328320802 80 1257142857
90 1.043478261 90 1221532091 90 1.164021164
1.2
0.98 14
0.8
§- 0.88 ?. 06
0.78 0.4
0.2
0.68 ! 0
0 5 10 15 0 5 10 15
Time Time

Figure 9.1. Time vs. Availability

MTTF

O = N W Bk U0

Figure 9.2. Time vs. Reliability

A

0 0.5 1
A

Figure 9.3. Ay vs. M.T.T.F.

Figure 9.4. Ap vs. M.T.T.F.
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0.5
Ac

Figure 9.5. Ac vs. M.T.T.F.

Table 9.6. Time vs. expected profit

121

Time Ep(t)
K2=O. 1 K2:0.2 K2:O.3 K2:0.4 K2:0.5

0 0 0 0 0 0

1 0.82135184 | 0.72135184 | 0.62135184 | 0.52135184 | 0.42135184
2 1.58093814 | 1.38093814 | 1.18093814 | 0.98093814 | 0.78093814
3 2.31168949 | 2.01168949 | 1.71168949 | 1.41168949 | 1.11168949
4 3.02113173 | 2.62113173 | 2.22113173 | 1.82113173 | 1.42113173
5 3.71244158 | 3.21244158 | 2.71244158 | 2.21244158 | 1.71244158
6 4.38703384 | 3.78703384 | 3.18703384 | 2.58703384 | 1.98703384
7 5.04562110 | 4.34562110 | 3.64562110 | 2.94562110 | 2.24562110
8 5.68865644 | 4.88865644 | 4.08865644 | 3.28865644 | 2.48865644
9 6.31649917 | 541649917 | 4.51649917 | 3.61649917 | 2.71649917
10 6.92947313 | 5.92947313 | 4.92947313 | 3.92947313 | 2.92947313
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Figure 9.6. Time vs. expected profit
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10. RESULTS AND DISCUSSION

It can be easily concluded from Figure9.1 that when n(u) = 0.20, A= 0.25, Ap=0.15
and Ac = 0.05, then availability of the system initially decreases rapidly with respect to
time and later on stabilizes at value 0.7. Also examination of Figure 9.2 reveals that
reliability of the system decreases with the increment in time.

When revenue cost per unit time K; kept at value 1 and service cost K, varied at
values 0.1, 0.2, 0.3, 0.4, 0.5, Figure9.6 is obtained. This graph draws an important
conclusion that increasing service cost leads decrement in expected profit. The highest and
lowest values of expected profit are obtained to be 6.92 and 0.421 respectively. Expected
profit decreases with the increment in K,.

Further Figure 9.3, 9.4 and 9.5 represents how M.T.T.F. of the system changes with
respect to As, Ap and Ac respectively when other parameters have been kept constant.
M.T.T.F. varies from 5.71 to 1.04, from 3.14 to 1.22 and from 2.80 to 1.1 with respect to
time in the cases of As, Ap and Ac respectively. By observing these graphs one can easily
conclude that M.T.T.F. of the complex system decreases as the value of A, Ap and A¢
increases. One remarkable observation is that M.T.T.F depends more on A, in comparison
to Ap and Ac.
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