• Title/Summary/Keyword: gene-flow

Search Result 545, Processing Time 0.033 seconds

Effects of TESTIN Gene Expression on Proliferation and Migration of the 5-8F Nasopharyngeal Carcinoma Cell Line

  • Zhong, Zhun;Zhang, Fei;Yin, Shu-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2555-2559
    • /
    • 2015
  • Purpose: To investigate effects of the TESTIN (TES) gene on proliferation and migration of highly metastatic nasopharyngeal carcinoma cell line 5-8F and the related mechanisms. Materials and Methods: The target gene of human nasopharyngeal carcinoma cell line 5-8F was amplified by PCR and cloned into the empty plasmid pEGFP-N1 to construct a eukaryotic expression vector pEGFP-N1-TES. This was then transfected into 5-8F cells. MTT assays, flow cytometry and scratch wound tests were used to detect the proliferation and migration of transfected 5-8F cells. Results: A cell model with stable and high expression of TES gene was successfully established. MTT assays showed that the OD value of 5-8F/TES cells was markedly lower than that of 5-8F/GFP cells and 5-8F cells (p<0.05). Flow cytometry showed that the apoptosis rate of 5-8F/TES cells was prominently increased compared with 5-8F/GFP cells and 5-8F cells (p<0.05). In vitro scratch wound assays showed that, the width of the wound area of 5-8F/TES cells narrowed slightly, while the width of the wound area of 5-8F/ GFP cells and 5-8F cells narrowed sharply, suggesting that the TES overexpression could inhibit the migration ability. Conclusions: TES gene expression remarkably inhibits the proliferation of human nasopharyngeal carcinoma cell line 5-8F and reduces its migration in vitro. Thus, it may be a potential tumor suppressor gene for nasopharyngeal carcinoma.

A Implementation of Optimal Multiple Classification System using Data Mining for Genome Analysis

  • Jeong, Yu-Jeong;Choi, Gwang-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.43-48
    • /
    • 2018
  • In this paper, more efficient classification result could be obtained by applying the combination of the Hidden Markov Model and SVM Model to HMSV algorithm gene expression data which simulated the stochastic flow of gene data and clustering it. In this paper, we verified the HMSV algorithm that combines independently learned algorithms. To prove that this paper is superior to other papers, we tested the sensitivity and specificity of the most commonly used classification criteria. As a result, the K-means is 71% and the SOM is 68%. The proposed HMSV algorithm is 85%. These results are stable and high. It can be seen that this is better classified than using a general classification algorithm. The algorithm proposed in this paper is a stochastic modeling of the generation process of the characteristics included in the signal, and a good recognition rate can be obtained with a small amount of calculation, so it will be useful to study the relationship with diseases by showing fast and effective performance improvement with an algorithm that clusters nodes by simulating the stochastic flow of Gene Data through data mining of BigData.

Genetic Structure of Macrophomina phaseolina Populations, the Causal Agent of Sesame Charcoal Rot Disease in Iran

  • Maryam Dolatkhah;Fariba ghaderi;Abdollah Ahmadpour
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.50-59
    • /
    • 2024
  • Charcoal rot disease, caused by the fungus Macrophomina phaseolina, is one of the most important diseases of Sesame (Sesamum indicum) all over the world. However, the population biology of M. phaseolina is poorly understood. In this study, M. phaseolina isolates from five different regions of Iran (Khuzestan, Fars, Bushehr, Hormozgan, and Kohgiluyeh & Boyer-Ahmad provinces) (n=200) were analyzed for genetic variation using inter simple sequence repeats marker. In total, 152 unique haplotypes were identified among the 200 M. phaseolina isolates, and gene diversity (H=0.46-0.84) and genotypic diversity were high in each of the regions. The structure analysis clustered five Iranian populations into two distinct groups, the individuals from group 1 were assigned to the Bushehr population and the individuals from Khuzestan, Fars, Hormozgan and Kohgiluyeh & Boyer-Ahmad were aggregated and formed group 2. The results matched with genetic differentiation and gene flow among regions. Analyses of the distribution of gene diversity within and among five Iranian populations were 61% and 39%, respectively. Our results showed that infected seeds are thought to be the dominant mechanism responsible for the spreading of the pathogen in southern parts of Iran. In summary, it is essential to have local quarantine and prevent seed exchanges between geographical populations to restrict the dispersal of pathogen over long distances and provide certified seeds in Iran.

Effect of Corydalis Tuber on the inhibition of proliferation of human uterine leiomyoma cell and apoptotic gene expression (현호색(玄胡索)이 자궁근종세포의 증식 억제와 Apoptosis 관련 유전자 발현에 미치는 영향)

  • Lee, Hee-Jae;Baek, Seung-Hee;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.2
    • /
    • pp.214-225
    • /
    • 2006
  • Purpose : This study was aimed to investigate the inhibitory effect of Corydalis Tuber on the proliferation of human uterine leiomyoma cell and the expression of gene related the mechanism of cell apoptosis. Methods : We counted the number of suvival cells treated with indicated concentration of Corydalis Tuber and investigated cell viability by MTS assay. Furthermore, flow cytometric analyis were used to dissect between necrosis and apoptosis related with cell cycle and then we observed the differential gene expression by western blot analysis. Results : 1) The inhibitory effect on the proliferation of uterine leiomyoma cell treated with Corydalis Tuber was increased in a concentration and time proportional. 2) The result of flow cytometry analysis, subG1 phase arrest related cell apoptosis was not investigated in uterine leiomyoma cell treated Corydalis Tuber but showed G2/M phase prolongation. 3) The gene expression of p27, p21 related cell cycle was increased according to increasing concentration, but p53 was not exchanged. 4) The dephosphorylation of pRb gene were increased dependent on treatment concentration and pro-caspase 3, CDK4 were not exchanged. Conclusion : This study showed that Corydalis Tuber have the inhibitory effect on the proliferation of human uterine leiomyoma cell but the effect was thoughted no relationship with apoptosis. The inhibitory effect was suggested that dephosphorylation of pRb gene induced with increasing p21, p27 prolonged cell division in G2/M phase.

  • PDF

Marker Genes for in Vitro Selection of Transgenic Plants

  • Brasileiro, Ana C.M.;Aragao, Francisco J.L.
    • Journal of Plant Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.113-121
    • /
    • 2001
  • The use of a marker gene in a transformation process aims to give a selective advantage to the transformed cells, allowing them to grow faster and better, and to kill the non-transformed cells. In general, the selective gene is introduced into plant genome along with the genes of interest. In some cases, the marker gene can be the gene of interest that will confer an agronomic characteristic, such as herbicide resistance. In this review we list and discuss the use of the most common selective marker genes on plant transformation and the effects of their respective selective agents. These genes could be divided in categories according their mode of action: genes that confer resistance to antibiotics and herbicides; and genes for positive selection. The contention of the marker gene flow through chloroplast transformation is further discussed. Moreover, strategies to recover marker-free transgenic plants, involving multi-auto-transformation (MAT), co-transformation, site specific recombination and intragenomic relocation of transgenes through transposable elements, are also reviewed.

  • PDF

Effect of physically contained greenhouse covered by fine mesh on pollen dispersal in maize

  • Watanabe, Shin;Kamada, Hiroshi;Ezura, Hiroshi
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.367-370
    • /
    • 2005
  • The risk from genetically modified (GM) plants results from the possibility of gene contamination producing adverse effects on biological diversity by introducing herbicide or insect resistance into related plants or weeds (NAS 2002). The concern about the leakage of genes from GM plants into the environment has primarily focused on pollen that could be wind-borne for long distances. During the period of fisk assessment in Japan, physical containment is applied as a measure of reducing gene flow via the dispersal of pollen from GM plants into the surrounding environment In this study, we tried to estimate the effect of physically contained greenhouse covered by 1-mm fine mesh to reduce pollen dispersal by researching cross pollination rate between non-GM yellow maize in a greenhouse and silver maize outside the greenhouse.

  • PDF

Effects of resveratrol on laminar shear stress-induced mitochondrial biogenesis in human vascular endothelial cells

  • Kim, Ji-Seok;Park, Joon-Young
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • [Purpose] The purpose of the study was to determine the combined effects of resveratrol supplementation with high-flow LSS on mitochondrial biogenesis in human vascular endothelial cells. [Methods] Cultured human umbilical vein endothelial cells were treated with 20 μM of RSV. For the shear experiments, cells grown to a >90% confluence were exposed to physiological levels of LSS (5 to 20 dyne/cm2) for 12 to 36 hours using a cone and plate shear apparatus. Gene expressions were analyzed by western blotting. [Results] Depletion of mitochondrial integrity was directly associated with increase in endothelial activation/dysfunction. The expressions of mitochondrial biogenesis regulator genes, such as SIRT1, PGC-1α, and TFAM, and the mitochondrial contents were significantly increased after treatment with both resveratrol and high-flow LSS for 12 hours. However, supplementation of resveratrol to high-flow LSS for a prolonged duration had no synergistic effect on the levels of mitochondrial biogenesis regulator gene expressions and mitochondrial content compared to the LSS treatment alone. [Conclusion] The present study demonstrated that the supplementation of resveratrol to high-flow LSS has no synergistic effects on enhancing mitochondrial integrity in human vascular endothelial cells.

Genetic Analysis of the Diamondback Moth, Plutella xylostella, Collected from China Using Mitochondrial COI Gene Sequence

  • Li, Jianhong;Choi, Yong Soo;Kim, Iksoo;Sohn, Hung Dae;Jin, Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.1
    • /
    • pp.137-144
    • /
    • 2004
  • The diamondback moth, Plutella xylostella, is notorious because of its extensive potential and actual dispersal ability. Previously, the Korean populations of P. xylostella was extensively collected and analyzed for their genetic population structure using a portion of mitochondrial DNA (mtDNA). One of the postulated characteristics on population genetic structure of the species includes the presence of heterogeneous haplotypes, possibly possessed by some dispersed ones from neighboring countries. In this study, we sequenced ten P. xylostella collected from China (∼2,000 km away from the middle part of Korea) to know the genetic relationships of these to the Korean P. xylostella. Sequence analysis of the identical portion of COI gene resulted in five haplotypes with the sequence divergence ranging from 0.5% (two nucleotides) to 1.1 % (five nucleotides) among them and from 0.7% (three) to 2.5% (11) to the pre-existing 52 Korean haplotypes. Phylogenetic analysis showed that the Chinese P. xylostella were neither clearly separated from the Korean haplotypes nor clustered with one heterogeneous Korean haplotype. This result reinforces the significance of gene flow in this species and suggests to exclude the possibility that the heterogeneous Korean haplotypes may have emigrated from China, where our samples were obtained, although further extensive investigation is required.

Additional mitochondrial DNA sequences from the dragonfly, Nannophya pygmaea (Odonata: Libellulidae), which is endangered in South Korea

  • Wang, Ah Rha;Kim, Min Jee;Kim, Sung Soo;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.1
    • /
    • pp.51-57
    • /
    • 2017
  • The tiny dragonfly, Nannophya pygmaea (Odonata: Libellulidae), is an endangered insect in South Korea. Previously, a partial mitochondrial DNA sequence that corresponded to a DNA barcoding region has been used to infer genetic diversity and gene flow. In this study, we additionally sequenced the barcoding region from N. pygmaea that had been collected from three previously sampled populations (40 individuals) and these sequences were combined with the preexisting data. We also selected and sequenced an additional mitochondrial gene (ND5) to find further variable gene regions in the mitochondrial genome. DNA barcoding sequences of 108 individuals from five South Korean localities showed that genetic diversity was highest in Gangjin, Jeollanam-do Province. Muuido, which was previously occupied by a single haplotype, was also found to have an identical haplotype, which confirmed the low genetic diversity on this islet. Gene flow among populations is highly limited, and no clear distance- or region-based geographic partitioning was observed. Phylogenetic relationships among haplotypes showed that there were no discernable haplotypes in South Korea. ND5 provided slightly more haplotypes compared to the barcoding region in 40 individuals (14 vs. 10 haplotypes in the COI gene). It also had a slightly higher within-locality diversity estimate, which suggested that ND5 had potential as mitochondrial DNA-based marker for population genetic analysis.

Influence of insect pollinators on gene transfer from GM to non-GM soybeans (GM 콩의 도입유전자 이동에 미치는 화분 매개충의 영향)

  • Lee, Bumkyu;Kim, Jun Hyeong;Sohn, Soo In;Kweon, Soon Jong;Park, Kee Woong;Chung, Young Soo;Lee, Si Myung
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.159-165
    • /
    • 2015
  • The cultivation area and use of genetically modified (GM) crops have been increased continuously over the world and concerns about the potential risks of GM crops are also increasing. One of the major concern in risk assessment is the possible development of hybrids through interspecific and intergeneric crosses with related species. This study was conducted to investigate the pollinator have an influence on insect-mediated gene transfer from GM soybeans. Hybrid was induced from GM soybeans by honeybee and western flower thrips, and non-GM soybeans were used as pollen receptor. The analysis for gene-flow was conducted by herbicide selection, immunostrip test, and PCR analysis. In the result of the analysis, three hybrids were detected on the distance 15, 75, 105 cm from pollen source in western flower thrips treatment. In honeybee treatment, one hybrid was detected in the farthest distance (300 cm). These results suggested honeybee and western flower thrips have a possibility they can transfer the introduced gene from GM soybeans to non-GM soybeans.