• Title/Summary/Keyword: gene translocation

Search Result 175, Processing Time 0.031 seconds

Inhibition of p65 Nuclear Translocation by Radicicol, Heat Shock Protein Inhibitor

  • Kim, Sang-Gyu;Jeon, Young-Jin;Lee, Seog-Ki
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.285-290
    • /
    • 2005
  • We demonstrate that radicicol, a macrocyclic antifungal antibiotic originally isolated from Monosporium bonorden, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells. Treatment of peritoneal macrophages and RAW 264.7 cells with radicicol inhibited LPS-stimulated nitric oxide production in a dose-related manner. Immunohistochemical staining of iNOS and RTPCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression in RAW 264.7 cells. Immunostaining of p65, EMSA, and reporter gene assay showed that radicicol inhibited $NF-\kappa/Rel$ nuclear translocation. DNA binding, and transcriptional activation, respectively. Collectively, these series of experiments indicate that radicicol inhibits iNOS gene expression by blocking $NF-\kappa/Rel$ nuclear translocation. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of radicicol on iNOS suggest that radicicol may represent a useful anti-inflammatory agent.

An update of preimplantation genetic diagnosis in gene diseases, chromosomal translocation, and aneuploidy screening

  • Chang, Li-Jung;Chen, Shee-Uan;Tsai, Yi-Yi;Hung, Chia-Cheng;Fang, Mei-Ya;Su, Yi-Ning;Yang, Yu-Shih
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.3
    • /
    • pp.126-134
    • /
    • 2011
  • Preimplantation genetic diagnosis (PGD) is gradually widely used in prevention of gene diseases and chromosomal abnormalities. Much improvement has been achieved in biopsy technique and molecular diagnosis. Blastocyst biopsy can increase diagnostic accuracy and reduce allele dropout. It is cost-effective and currently plays an important role. Whole genome amplification permits subsequent individual detection of multiple gene loci and screening all 23 pairs of chromosomes. For PGD of chromosomal translocation, fluorescence $in-situ$ hybridization (FISH) is traditionally used, but with technical difficulty. Array comparative genomic hybridization (CGH) can detect translocation and 23 pairs of chromosomes that may replace FISH. Single nucleotide polymorphisms array with haplotyping can further distinguish between normal chromosomes and balanced translocation. PGD may shorten time to conceive and reduce miscarriage for patients with chromosomal translocation. PGD has a potential value for mitochondrial diseases. Preimplantation genetic haplotyping has been applied for unknown mutation sites of single gene disease. Preimplantation genetic screening (PGS) using limited FISH probes in the cleavage-stage embryo did not increase live birth rates for patients with advanced maternal age, unexplained recurrent abortions, and repeated implantation failure. Polar body and blastocyst biopsy may circumvent the problem of mosaicism. PGS using blastocyst biopsy and array CGH is encouraging and merit further studies. Cryopreservation of biopsied blastocysts instead of fresh transfer permits sufficient time for transportation and genetic analysis. Cryopreservation of embryos may avoid ovarian hyperstimulation syndrome and possible suboptimal endometrium.

Inhibition of p65 Nuclear Translocation by Baicalein

  • Seo, Min-Bum;Lee, Seog-Ki;Jeon, Young-Jin;Im, Jin-Su
    • Toxicological Research
    • /
    • v.27 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • We demonstrate that baicalein, a bioactive flavonoid originally isolated from Scutellaria baicalensis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells. Treatment of peritoneal macrophages and RAW 264.7 cells with baicalein inhibited LPS-stimulated nitric oxide production in a dose-related manner. Immunohistochemical staining of iNOS and RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression in RAW 264.7 cells. Immunostaining of p65, EMSA, and reporter gene assay showed that baicalein inhibited NF-${\kappa}$B nuclear translocation, DNA binding, and transcriptional activation, respectively. Collectively, these series of experiments indicate that baicalein inhibits iNOS gene expression by blocking NF-${\kappa}$B nuclear translocation. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of baicalein on iNOS suggest that baicalein may represent a useful anti-inflammatory agent.

FUSION OF THE PLAG1 AND CTNNB1 GENES IN PLEOMORPHIC ADENOMA OF THE SALIVARY GLANDS (타액선 다형성 선종에서의 PLAG1과 CTNNB1 유전자 융합)

  • Kim, Jae-Jin;Kim, Eun-Seok;Ko, Seung-O;Kim, Hyo-Bun;Cho, Nam-Pyo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.4
    • /
    • pp.206-211
    • /
    • 2003
  • The pleomorphic adenoma is the most common neoplasm involving both the major and minor salivary glands. It is a benign, slowgrowing tumor, but local recurrences can occur. The pleomorphic adenoma gene 1 (PLAG1), which is a novel zinc finger gene, is frequently activated by reciprocal chromosomal translocations involving 8q12 in a subset of salivary gland pleomorphic adenomas. This experimental study was preformed to observe the translocation patterns between PLAG1 gene and the three translocation partner genes. We also have analyzed the presence of PLAG1 transcripts by RT-PCR. CTNNB1/PLAG1 gene fusion was observed in three of nine pleomorphic adnomas. However, LIFR/PLAG1 and SII/PLAG1 gene fusions were not detectable. All of three gene fusions was not detectable in one Warthin's tumor and three inflammatory salivary gland tissues. PLAG1 transcripts were expressed in all inflammatory salivary gland tissues and tumors except for three pleomorphic adenomas. Of particular one pleomorphic adenoma showing CTNNB1/PLAG1 gene fusion did not express PLAG1 transcipt. Our data indicate that gene fusion involving PLAG1 is a frequent event in pleomorphic adenoma, but correlation between gene fusion involving PLAG1 and PLAG1 transcription is not definite.

Cloning and Characterization of BTG-1 Gene from Pacific Oyster (Crassostrea gigas) (참굴(Crassostrea gigas)의 BTG1 유전자의 특성)

  • Chung, In Young;Oh, Jeong Hwan;Song, Young Hwan
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.398-407
    • /
    • 2017
  • BTG 1 (B-cell translocation gene 1) gene was first identified as a translocation gene in a case of B-cell chronic lympocytic leukemia. BTG1 is a member of the BTG/TOB family with sharing a conserved N-terminal region, which shows anti-proliferation properties and is able to stimulate cell differentiation. In this study, we identified and characterized the pacific oyster Crassostrea gigas BTG1 (cg-BTG1) gene from the gill cDNA library by an Expressed Sequence Tag (EST) analysis and its nucleotide sequence was determined. The cg-BTG1 gene encodes a predicted protein of 182 amino acids with 57% 56% identities to its zebrafish and human counterparts, and is an intron-less gene, which was confirmed by PCR analysis of genomic DNA. Maximal homologies were shown in conserved Box A and B. The deduced amino acid sequence shares high identity with other BTG1 genes of human, rat, mouse and zebrafish. The phylogenic analysis and sequence comparison of cg-BTG1 with other BTG1 were found to be closely related to the BTG1 gene structure. In addition, the predicted promoter region and the different transcription-factor binding site like an activator protein-1 (AP-1) response element involved in negative regulation and serum response element (SRE) were able to be identified by the genomic DNA walking experiment. The quantitative real-time PCR analysis showed that the mRNA of cg-BTG1 gene was expressed in gill, heart, digestive gland, intestine, stomach and mantle. The cg-BTG1 gene was expressed mainly in heart and mantle.

A Novel Translocation Involving RUNX1 and HOXA Gene Clusters in a Case of Acute Myeloid Leukemia with t(7;21)(p15;q22)

  • Moon, Yeonsook;Horsman, Douglas E.;Humphries, R. Keith;Park, Gyeongsin
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.222-226
    • /
    • 2013
  • Translocations involving chromosome 21q22 are frequently observed in hematologic malignancies including acute myeloid leukemia (AML), most of which have been known to be involved in malignant transformation through transcriptional dysregulation of Runt-related transcription factor 1 (RUNX1) target genes. Nineteen RUNX1 translocational partner genes, at least, have been identified, but not Homeobox A (HOXA) genes so far. We report a novel translocation of RUNX1 into the HOXA gene cluster in a 57-year-old female AML patient who had been diagnosed with myelofibrosis 39 months ahead. G-banding showed 46,XX,t(7;21)(p15;q22). The involvement of RUNX1 and HOXA genes was confirmed by fluorescence in situ hybridization.

Clinical Features of Lung Cancer in Japanese Patients Aged Under 50

  • Igata, Fumiyasu;Uchino, Junji;Fujita, Masaki;Iwasaki, Akinori;Watanabe, Kentaro
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3377-3380
    • /
    • 2016
  • The proportion of lung cancer patients under 50 years old is small at approximately 5-10%, but as with patients older than 50, the number is on the rise. Although lung cancer treatment strategies have undergone extensive transformation in recent years based on the presence or absence of oncogenic driver mutations, there are few reports regarding these mutations in the young or the relationship between clinical setting and prognosis. Therefore, we conducted a study of clinical features in 36 patients under the age of 50 who were diagnosed with primary lung cancer from October 2008 to November 2015. The 22 patients in stages I through III A underwent operations, and all 17 whose lung cancer were detected through screening were candidates for surgery. Gene analysis was conducted for 26 (72.2%); 10 (38.5%) were positive for EGFR gene mutations, and ALK gene translocation was present in 4 (15.4%). In stage IV patients, the median progression free survival (PFS) in the ALK translocation positive and negative patients was 518 days and 130 days, respectively, and the median overall survival (OS) was not reached and 280 days, respectively. A trend toward extended PFS (p=0.203) and OS (p=0.056) was observed in patients positive for ALK translocation. We must strive for early detection by increasing screening rates and evaluate oncogenic driver mutations important for prognosis of lung cancer in the young.

Expressed Sequence Tags of the Wheat-rye Translocation Line Possessing 2BS/2RL

  • Jang, Cheol-Seong;Hong, Byung-Hee;Seo, Yong-Weon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.302-307
    • /
    • 1999
  • Hamlet (PI549276) possessing 2RL was obtained by cross between a wheat cultivar ND7532 (Froid/Centurk) and a rye cultivar Chaupon. Chaupon was known to have resistant gene to biotype L of Hessian fly [Mayetiola destructor (Say)] larvae. The wheat-rye translocation line (Coker797*4/Hamlet) was also known to be resistant to biotype L of Hessian fly larvae. We analysed a set of 96 ESTs from the wheat-rye translocation line (2BS/2RL). ESTs were classified by various physiological processings, such as primary metabolism, secondary metabolism, transcription, translation, transport, signal transduction, defense, transposable element, and others. Three sequences encoding thioredoxin peroxidase, 26S rRNA, and rubisco small subunits were homologous to registered genes in rye. Although limited number of clones were used to develop ESTs, these clones and their sequence information may be useful for researchers studying general physiology and molecular biology on the translocation line.

  • PDF

Identification of chromosomal translocation causing inactivation of the gene encoding anthocyanidin synthase in white pomegranate (Punica granatum L.) and development of a molecular marker for genotypic selection of fruit colors

  • Jeong, Hyeon-ju;Park, Moon-Young;Kim, Sunggil
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.857-864
    • /
    • 2018
  • Previous studies have not detected transcripts of the gene encoding anthocyanidin synthase (ANS) in white pomegranates (Punica granatum L.) and suggest that a large-sized insertion in the coding region of the ANS gene might be the causal mutation. To elucidate the identity of the putative insertion, 3887-bp 5' and 3392-bp 3' partial sequences of the insertion site were obtained by genome walking and a gene coding for an expansin-like protein was identified in these genome-walked sequences. An identical protein (GenBank accession OWM71963) isolated from pomegranate was identified from BLAST search. Based on information of OWM71963, a 5.8-Mb scaffold sequence with genes coding for the expansin-like protein and ANS were identified. The scaffold sequence assembled from a red pomegranate cultivar also contained all genome-walked sequences. Analysis of positions and orientations of these genes and genome-walked sequences revealed that the 27,786-bp region, including the 88-bp 5' partial sequences of the ANS gene, might be translocated into an approximately 22-kb upstream region in an inverted orientation. Borders of the translocated region were confirmed by PCR amplification and sequencing. Based on the translocation mutation, a simple PCR codominant marker was developed for efficient genotyping of the ANS gene. This molecular marker could serve as a useful tool for selecting desirable plants at young seedling stages in pomegranate breeding programs.

Molecular mechanism underlying Arabidopsis root architecture changes in response to phosphate starvation

  • Chun, Hyun Jin;Lee, Su Hyeon;Kim, Min Chul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.174-174
    • /
    • 2017
  • To cope with phosphate (Pi) deficient stress, plants modulate various physiological and developmental processes, such as gene expression, Pi uptake and translocation, and root architecture changes. Here, we report the identification and characterization of novel activation-tagged mutant involved in Pi starvation signaling in Arabidopsis. The hpd (${\underline{h}ypersensitive}$ to ${\underline{P}i}$ $ {\underline{d}eficiency}$) mutant exhibits enhanced phosphate uptake and altered root architectural change under Pi starvation compared to wild type. Expression analysis of auxin-responsive DR5::GUS reporter gene in hpd mutant indicated that auxin translocation in roots under Pi starvation are suppressed in hpd mutant plants. Impaired auxin translocation in roots of hpd mutant was attributable to abnormal root architecture changes in Pi starvation conditions. Our results indicated that abnormal auxin translocation in hpd mutant might be due to mis-regulation of auxin efflux carrier proteins, PIN-FORMED (PIN) 1, and 2 under Pi starvation conditions. Not only expression levels but also expression domains of PIN proteins were altered in hpd mutant in response to Pi starvation. Molecular genetic analysis of hpd mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3'-end processing. The results suggest that mRNA processing plays crucial roles in Pi homeostasis as well as developmental reprograming in response to Pi deprivation in Arabidopsis.

  • PDF