• Title/Summary/Keyword: gene mutations

Search Result 994, Processing Time 0.026 seconds

Thrombotic thrombocytopenic purpura with decreased level of ADAMTS-13 activity and increased level of ADAMTS-13 inhibitor in an adolescent (청소년기에 발생한 ADAMTS-13 활성도 저하와 항체 양성을 보인 혈전저혈소판혈증자색반병 1례)

  • Yang, Eun Mi;Han, Dong Kyun;Baek, Hee Jo;Shin, Myung Geun;Kim, Young Ok;Kook, Hoon;Hwang, Tae Ju
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.3
    • /
    • pp.428-431
    • /
    • 2010
  • Thrombotic thrombocytopenic purpura (TTP) is a thrombotic microangiopathy characterized by endothelial cell damage, resulting in microangiopathic hemolytic anemia, thrombocytopenia, and various degrees of neurological and renal impairment caused by microvascular thrombi. It is rare in children and frequently follows a fatal course. TTP is divided into 2 types: one is inherited and associated with ADAMTS-13 gene mutations and the other is acquired and associated with anti-ADAMTS-13 autoantibodies. The measurement of ADAMTS-13 activity in plasma, identification of ADAMTS-13 circulating inhibitor, anti-ADAMTS-13 IgG, and ADAMTS-13 gene sequencing are crucial to the diagnosis of TTP. Plasma exchanges are the first-line treatment for acquired TTP, combined with steroids and immunosuppressive drugs. Here, we describe the case of an adolescent patient with TTP, confirmed by decreased level of ADAMTS-13 activity and an increased level of ADAMTS-13 inhibitor, who was successfully treated by plasma exchanges.

Phenylketonuria: Current Treatments and Future Developments (페닐케톤뇨증의 치료: 현재와 미래)

  • Lee, Jeongho
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.20 no.2
    • /
    • pp.37-43
    • /
    • 2020
  • Phenylketonuria is the most prevalent disorder caused by an inborn error in aminoacid metabolism. It results from mutations in the phenylalanine hydroxylase (PAH) gene. If untreated or late treated, results in profound and irreversible mental disability. Newborn screening test identify patients with phenylketouria. The early initiation of a phenylalanine restricted diet very soon prevents most of the neuropsychiatric complications. However, the diet therapy is difficult to maintain and compliance is poor, especially in adolescents and adulthood. Since 2015, American Medical College of Medical Genetics and Genomics (ACMG) recommended more strong restrictive diet therapy for target blood level of phenylalanine (<360 umol/L). For over four decades the only treatment was a very restrictive low phenylalanine diet. This changed in 2007 with the approval of cofactor therapy (Tetrahydrobiopterin, BH4) which is effective in up to 30% of patients. Data from controlled clinical trials with sapropterin dihydrochloride indicate a similar occurrence of all-cause adverse events with this treatment and placebo. Large neutral aminoacids (LNAA) competes with phenylalanine for transport across the blood-brain-barrier and have a beneficial effect on executive functioning. A new therapy has just been approved that can be effective in most patients with PAH deficiency regardless of their degree of enzyme deficiency or the severity of their phenotype. Phenylalanine ammonia lyase (PAL-PEG) was approved in the USA by FDA in May of 2018 for adult patients with uncontrolled blood phenylalanine concentrations on current treatment. Nucleic acid therapy (therapeutic mRNA or gene therapy) is likely to provide longer term solutions with few side effects.

A Case of Propionic Acidemia Presenting with Dilated Cardiomyopathy (확장성 심근병증으로 발현된 프로피온산혈증 1례)

  • Son, Jisoo;Choi, Yoon-Ha;Seo, Go Hun;Kang, Minji;Lee, Beom Hee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 2021
  • Propionic acidemia (PA) is an inherited autosomal recessive disorder, due to the deficiency of propionyl-CoA carboxylase (PCC). PCC is the enzyme which catalyzes the conversion of propionyl-CoA to D-methylmalonyl-CoA, and it is critical for the metabolism of amino acids, odd-chain fatty acids, and side chains of cholesterol. The clinical manifestations present mostly at the neonatal period with life-threatening metabolic acidosis and hyperammonemia. Here, we described a case of a 16-year-old Korean boy with late-onset PA who presented with embolic cerebral infarction due to dilated cardiomyopathy (DCMP) with left ventricular noncompaction. And he has family history of sudden cardiac death, so we performed metabolic screening and genetic tests. Elevated levels of 3-hydroxypropionic acid, methylcitric acid and propionylglycerine were detected in urine. Plasma acylcarnitine profile showed elevated propionylcarnitine (C3). Diagnosis of PA was confirmed by genetic analysis, which revealed compound heterozygous mutations, c.[1151T>G] (p.[Phe384Cys]) and c.[1228C>T] (p.[Arg410Trp]) in PCCB gene. His heart function is in improving state and the results of biochemical analysis are stable with heart failure medication and metabolic managements. We present a case of patient without episodes of metabolic decompensation who manifests DCMP as the first symptom of PA.

CRISPR/Cas9-mediated knockout of the Vanin-1 gene in the Leghorn Male Hepatoma cell line and its effects on lipid metabolism

  • Lu Xu;Zhongliang Wang;Shihao Liu;Zhiheng Wei;Jianfeng Yu;Jun Li;Jie Li;Wen Yao;Zhiliang Gu
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.437-450
    • /
    • 2024
  • Objective: Vanin-1 (VNN1) is a pantetheinase that catalyses the hydrolysis of pantetheine to produce pantothenic acid and cysteamine. Our previous studies have shown that the VNN1 is specifically expressed in chicken liver which negatively regulated by microRNA-122. However, the functions of the VNN1 in lipid metabolism in chicken liver haven't been elucidated. Methods: First, we detected the VNN1 mRNA expression in 4-week chickens which were fasted 24 hours. Next, knocked out VNN1 via CRISPR/Cas9 system in the chicken Leghorn Male Hepatoma cell line. Detected the lipid deposition via oil red staining and analysis the content of triglycerides (TG), low-density lipoprotein-C (LDL-C), and high-density lipoprotein-C (HDL-C) after VNN1 knockout in Leghorn Male Hepatoma cell line. Then we captured various differentially expressed genes (DEGs) between VNN1-modified LMH cells and original LMH cells by RNA-seq. Results: Firstly, fasting-induced expression of VNN1. Meanwhile, we successfully used the CRISPR/Cas9 system to achieve targeted mutations of the VNN1 in the chicken LMH cell line. Moreover, the expression level of VNN1 mRNA in LMH-KO-VNN1 cells decreased compared with that in the wild-type LMH cells (p<0.0001). Compared with control, lipid deposition was decreased after knockout VNN1 via oil red staining, meanwhile, the contents of TG and LDL-C were significantly reduced, and the content of HDL-C was increased in LMH-KO-VNN1 cells. Transcriptome sequencing showed that there were 1,335 DEGs between LMH-KO-VNN1 cells and original LMH cells. Of these DEGs, 431 were upregulated, and 904 were downregulated. Gene ontology analyses of all DEGs showed that the lipid metabolism-related pathways, such as fatty acid biosynthesis and long-chain fatty acid biosynthesis, were enriched. KEGG pathway analyses showed that "lipid metabolism pathway", "energy metabolism", and "carbohydrate metabolism" were enriched. A total of 76 DEGs were involved in these pathways, of which 29 genes were upregulated (such as cytochrome P450 family 7 subfamily A member 1, ELOVL fatty acid elongase 2, and apolipoprotein A4) and 47 genes were downregulated (such as phosphoenolpyruvate carboxykinase 1) by VNN1 knockout in the LMH cells. Conclusion: These results suggest that VNN1 plays an important role in coordinating lipid metabolism in the chicken liver.

Clinical Meaning of INNO-LiPA Test in the Diagnosis of Rifampin Resistant Tuberculosis (Rifampin 내성 결핵의 진단에서 INNO-LiPA 검사법의 임상적 의미)

  • Chang, Yoon Soo;Kim, Young;Lee, Chang Youl;Choi, Jong Rak;Kim, Hyung Jung;Ahn, Chul Min;Kim, Sung Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.4
    • /
    • pp.344-352
    • /
    • 2003
  • Background : The prevalence of multidrug resistant tuberculosis (MDR-TB), resistant to isoniazid (INH) and rifampin (RFP), was 5.3% worldwide in 1995 and its increment has raised important public health problems. Resistance to RFP, one of the key drugs in the treatment of tuberculosis, results in grim clinical outcome. Recently rapid detection of RFP-resistant mutations in rpoB gene based on PCR method has become available. This study evaluated the prevalence of RFP resistance in first diagnosed, treatment failure, and recurred patients using INNO-LiPA test, and compared the results of INNO-LiPA with those of conventional mycobacterial drug susceptibility test. Methods : Forty-six patients, who were diagnosed of pulmonary tuberculosis and had revealed positive sputum AFB smear, were enrolled in this study from 1998 to 2002. The cases were classified as one three groups; first diagnosed, treatment failure, or recurred. RFP resistance was studied using an INNO-LiPA Rif. TB kit and compared with that obtained from drug susceptibility based on M. tuberculosis culture study. Results : Twenty-one out of 46 patients were enrolled under first diagnosis of pulmonary tuberculosis, 17 under treatment failure with first line drugs, and 8 under recurrence. The positive and negative predictive values of INNO-LiPA test in diagnosis in RFP resistant tuberculosis compared with conventional mycobacterial drug susceptibility test were 85.7% and 76.0%, respectively. INNO-LiPA result revealed rpoB gene mutation in 20 (80.0%) out of 25 patients who were diagnosed as treatment failure or recurrence, but in only 4 (19.0%) out of 21 patients who were first diagnosed as pulmonary tuberculosis. Conclusion : This study showed that RFP resistance could be diagnosed rapidly and accurately using INNO-LiPA test and that this test might be helpful for choosing second line anti-mycobacterial drugs. It might be of great help in clinical diagnosis and decision when used in complimentarily with drug susceptibility test based on M. tuberculosis culture.

A Case Report of Novel Mutation in GNPTAB in Two Siblings with Mucolipidosis Type III Alpha/beta (GNPTAB 유전자에서 새로운 돌연변이가 확인된 뮤코지방증 III형 남매)

  • Kim, Min-Sun;Park, Esther;Song, Ari;Im, Minji;Park, Hyung-Doo;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.3
    • /
    • pp.99-106
    • /
    • 2018
  • Mucolipidosis type III (pseudo-Hurler polydystrophy) is a mucolipids degrading disorder caused by a mutation in the GNPTAB gene and is inherited by autosomal recessive. It is diagnosed by examining highly concentrated mucolipids in blood and the diagnosis can be confirmed by genetic testing. Mucolipidosis type III is a rare and progressive metabolic disorder. Its initial signs and symptoms usually occur around 3 years of age. Clinical manifestations of the disease include slow growth, joint stiffness, arthralgia, skeletal abnormalities, heart valve abnormalities, recurrent respiratory infection, distinctive facial features, and mild intellectual disability. Here, we are presenting two siblings of mucolipidosis type III, a 4-year-old female and a 2 years and 7 months old male with features of delayed growth and coarse face. The diagnosis was confirmed by [c.2715+1G>A(p.Glu906Leufs*4), c.2544del(p.Glu849Lysfs*22)] mutation in targeted gene panel sequencing. In this case, c.2544del is a heterozygote newly identified mutation in mucolipidosis type III and was not found in the control group including the genome aggregation database. And it is interpreted as a pathogenic variant considering the association with phenotype. Here, we report a Korean mucolipidosis type III patients with novel mutations in GNPTAB gene who have been treated since early childhood. Owing to recent development of molecular genetic techniques, it was possible to make early diagnosis and treatment with pamidronate was initiated appropriately in case 1. In addition to these supportive therapies, efforts must be made to develop fundamental treatment for patients with early diagnosis of mucolipidosis.

  • PDF

Relationship between porcine miR-20a and its putative target low-density lipoprotein receptor based on dual luciferase reporter gene assays

  • Ding, Yueyun;Zhu, Shujiao;Wu, Chaodong;Qian, Li;Li, DengTao;Wang, Li;Wan, Yuanlang;Zhang, Wei;Yang, Min;Ding, Jian;Wu, Xudong;Zhang, Xiaodong;Gao, Yafei;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.922-929
    • /
    • 2019
  • Objective: Mutations in low-density lipoprotein receptor (LDLR), which encodes a critical protein for cholesterol homeostasis and lipid metabolism in mammals, are involved in cardiometabolic diseases, such as familial hypercholesterolemia in pigs. Whereas microRNAs (miRNAs) can control LDLR regulation, their involvement in circulating cholesterol and lipid levels with respect to cardiometabolic diseases in pigs is unclear. We aimed to identify and analyze LDLR as a potential target gene of SSC-miR-20a. Methods: Bioinformatic analysis predicted that porcine LDLR is a target of SSC-miR-20a. Wild-type and mutant LDLR 3'-untranslated region (UTR) fragments were generated by polymerase chain reaction (PCR) and cloned into the pGL3-Control vector to construct pGL3 Control LDLR wild-3'-UTR and pGL3 Control LDLR mutant-3'-UTR recombinant plasmids, respectively. An miR-20a expression plasmid was constructed by inserting the porcine premiR-20a-coding sequence between the HindIII and BamHI sites in pMR-mCherry, and constructs were confirmed by sequencing. HEK293T cells were co-transfected with the miR-20a expression or pMR-mCherry control plasmids and constructs harboring the corresponding 3'-UTR, and relative luciferase activity was determined. The relative expression levels of miR-20a and LDLR mRNA and their correlation in terms of expression levels in porcine liver tissue were analyzed using reverse-transcription quantitative PCR. Results: Gel electrophoresis and sequencing showed that target gene fragments were successfully cloned, and the three recombinant vectors were successfully constructed. Compared to pMR-mCherry, the miR-20a expression vector significantly inhibited wild-type LDLR3'-UTR-driven (p<0.01), but not mutant LDLR-3'-UTR-driven (p>0.05), luciferase reporter activity. Further, miR-20a and LDLR were expressed at relatively high levels in porcine liver tissues. Pearson correlation analysis revealed that porcine liver miR-20a and LDLR levels were significantly negatively correlated (r = -0.656, p<0.05). Conclusion: LDLR is a potential target of miR-20a, which might directly bind the LDLR 3'-UTR to post-transcriptionally inhibit expression. These results have implications in understanding the pathogenesis and progression of porcine cardiovascular diseases.

Analysis of p53 and Retinoblasoma(Rb) Gene Polymorphisms in Relation to Lung Cancer in Koreans (한국인 폐암 환자에 대한 p53 및 Rb유전자의 다형성 분석)

  • Lee, Kyung-Sang;Sohn, Jang-Won;Yang, Suck-Chul;Yoon, Ho-Joo;Shin, Dong-Ho;Park, Sung-Soo;Lee, Jung-Hee;Lee, Chun-Geun;Cho, Youl-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.534-546
    • /
    • 1997
  • Background : The p53 and retinoblastoma(Rb) tumor suppressor genes are associated with the pathogenesis of several types of human cancer. Substantial proportion of the primary lung cancers or cell lines have been reported to have the p53 and/or the Rb gene mutations. But, so far there is no report on the analysis of the Rb gene polymorphism as one of the genetic susceptibility marker. This study was undertaken to establish the gene frequencies of the polymorphic genotypes of the p53 and Rb genes in Koreans to evaluate the possible involvement of these genotypes as a risk factor of lung cancer. Methods : In this study 145 controls without previous and present tumor history and 128 lung cancer patients were subjected to analysis. The two intragenic polymorphisms of the p53 gene(exon 4/ AccII, intron 6/MspI) and one intron 17/XbaI polymorphism of the Rb gene were analysed by the method of polymersae chain reaction- restriction fragment length polymorphisms(PCR-RFLPs). The genotype of the intron 3/16 bp repeat polymorphism of p53 was determined by PCR and direct gel electrophoresis. Results : There were no significant differences in the genotype distributions of the p53 gene between lung cancer patients and controls. But heterozygotes(Arg/Pro) of the exon 4/AccII polymorphisms were slightly over-represented than controls, especially in the Kreyberg type I cancer, which was known to be associated with smoking. The intron 3/16 bp duplication and the intron 6/MspI polymorphisms were in complete linkage disequilibrium. About 95% of the individuals were homozygotes of the common alleles both in the 16 duplication and MspI polymorphisms, and no differences were deteced in the genotype distributions between lung cancer patients and controls. Overall genotype distributions of the Rb gene polymorphisms between lung cancer patients and controls were not significantly different However, the genotype distributions in the Kreyberg type I cancer were significantly different from those of controls(p = 0.0297) or adenocarcinomas(p = 0.0008). It was noticeable that 73.4% of the patients with adenocarcinomas were heterozygotes(r1/r2) whereas 39.2% of the Kreyberg type I cancer were heterozygous at this polymorphisms. In the lung cancer patients, significant differences were also noted between the high dose smokers and low dose smokers including non-smokers(p = 0.0258). The relative risk to Kreyberg type I cancer was significantly reduced in the individuals with the genotype of r1/r2(odds ratio = 0.46, 95% C.I. = 0.25-0.86, p = 0.0124). The combined genotype distribution of the exon 4 AccII of the p53 and the intron 17 Rb gene polymorphisms in Kreyberg type I cancers were significantly different from dose of controls or adenocarcinomas. The highest odds ratio were observed in the individuals with the genotypes of Arg/Pro and r2/r2(odds ratio = 1.97,95% C.I. = 0.84-4.59) and lowest one was in the patients with Arg/Arg, r1/r2 genotype(odds ratio = 0.54, 95% C.I. = 0.25-1.14). Conclusion : The p53 and the Rb gene polymorphisms modulate the risk of smoking induced lung cancer development in Koeans. However, the exact mechanism of risk modulation by these polymorphism remains to be determined. For more discrete clarification of associations between specific genotypes and lung cancer risk, the evaluations of these polymorphisms in other ethnics and more number of patients will be needed.

  • PDF

Angiotensin Converting Enzyme Gene Polymorphism in Alport Syndrome (알포트증후군 환자에서 안지오텐신전환효소 유전자 다형성의 의의)

  • Kim Ji-Hong;Lee Jae-Seung;Kim Pyung-Kil
    • Childhood Kidney Diseases
    • /
    • v.8 no.1
    • /
    • pp.18-25
    • /
    • 2004
  • Purpose : Alport syndrome is clinically characterized by hereditary progressive nephritis causing ESRD with irregular thickening of the GBM and sensory neural hearing loss. The mutations of type IV collagen gene(COL4A5) located on the long arm of X chromosome is considered responsible for most of the structural abnormalities in the GBM of Alport patients. Since no definite clinical prognostic predictor has been reported in the disease yet, we designed this study to evaluate the significance of genetic polymorphism of the angiotensin converting enzyme in children with Alport syndrome as a prognostic factor for disease progression. Methods : ACE I/D genotype were examined by PCR amplification of the genomic DNA in 12 patients with Alport syndrome and 12 of their family members. Alport patients were divided into two groups; the conservative group, those who had preserved renal function for more than 10 years of age, the early CRF group, those who had progressed to CRF within 10 years of age. Results : The mean age of onset was $3.45{\pm}2.4$ years in the conservative group, $4.4{\pm}1.2$ years in the early CRF group. Sex ratios were 5:3 and 2:1 in each group. Among 12 cases of patients, 4 cases were in early CRF group and their mean duration of onset to CRF was 4.5 yews(8.9 years of age). Eight patients(67%) were in the conservative group and they had normal renal function for more than 10 years of age(mean duration of renal preservation was 10.6 years). The incidence of II type ACE gene were in 25.0%(3 cases), ID type in 41.7%(5 cases), DD type in 33.3%(4 cases). There was no significant difference between Alport patient and normal control(II type 44.3%, ID type 40.9%, DD type 14.8%). The incidence of DD type of early CRF group were higher than that of the conservative group(75% vs 12.5%)(p<0.05). There was no difference in ACE gene polymorphism between normal Alport family members and control group. Conclusion : Even though there was no significant difference of ACE polymorphism between Alport patients and the normal control group, the incidence of DD type is significantly increased in early CRF group which means DD type of ACE polymorphism has a possibility of being a predictor for early progression to CRF in Alport patients.

  • PDF

Generation of a transgenic mouse model to study cranial suture development; Apert syndrome (두개봉합 발육 연구를 위한 형질변환 쥐의 개발 : 어퍼트 신드롬)

  • Lee, Kee-Joon;Ratisoontorn, Chootima;Baik, Hyoung-Seon;Park, Young-Chel;Park, Kwang-Kyun;Nah, Hyun-Duck
    • The korean journal of orthodontics
    • /
    • v.33 no.6 s.101
    • /
    • pp.485-497
    • /
    • 2003
  • The form and function of the craniofacial structure critically depend on genetic information. With recent advances in the molecular technology, genes that are important for normal growth and morphogenesis of the craniofacial skeleton are being rapidly uncovered, shaping up modem craniofacial biology. One of them is fibroblast growth factor receptor 2 (FGFR2). Specific point mutations in the. FGFR2 gene have been linked to Apert syndrome, which is characterized by premature closure of cranial sutures and craniofacial anomalies as well as limb deformities. To study pathogenic mechanisms underlying craniosynostosis phenotype of Apert syndrome, we used a transgenic approach; an FGFR2 minigene construct containing an Apert mutation (a point mutation that substitute proline at the position 253 to arginine; P253R) was introduced into fertilized mouse germ cells by DNA microinjection. The injected cells were then allowed to develop into transgenic mice. We used a bone-specific promoter (a DNA fragment from the type I collagen gene) to confine the expression of mutant FGFR2 gene to the bone tissue, and asked whether expression of mutant FGFR2 in bone is sufficient to cause the craniosynostosis phenotype in mice. Initial characterization of these mice shows prematurely closed cranial sutures with facial deformities expected from Apert patients. We also demonstrate that the transgene produces mutant FGFR2 protein with increased functional activities. Having this useful mouse model, we now can ask questions regarding the role of FGFR2 in normal and abnormal development of cranial bones and sutures.