Generation of a transgenic mouse model to study cranial suture development; Apert syndrome

두개봉합 발육 연구를 위한 형질변환 쥐의 개발 : 어퍼트 신드롬

  • Lee, Kee-Joon (Department of Orthodontics, College of Dentistry, Yonsei University Visiting Scholar, Department of Biochemistry, School of Dentakl Medicine, University of Pennsylvania) ;
  • Ratisoontorn, Chootima (Department of Biochemistry, School of Dental Medicine, University of Pennsylvania) ;
  • Baik, Hyoung-Seon (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Park, Young-Chel (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Park, Kwang-Kyun (Department of Biochemistry, College of Dentistry, Yonsei University) ;
  • Nah, Hyun-Duck (Department of Biochemistry, School of Dental Medicine, University of Pennsylvania)
  • 이기준 (연세대학교 치과대학 교정학교실) ;
  • ;
  • 백형선 (연세대학교 치과대학 교정학교실) ;
  • 박영철 (연세대학교 치과대학 교정학교실) ;
  • 박광균 (연세대학교 치과대학 생화학교실) ;
  • 나현덕 (Univ. of Pennsylvania 치과대학 생화학교실)
  • Published : 2003.12.01

Abstract

The form and function of the craniofacial structure critically depend on genetic information. With recent advances in the molecular technology, genes that are important for normal growth and morphogenesis of the craniofacial skeleton are being rapidly uncovered, shaping up modem craniofacial biology. One of them is fibroblast growth factor receptor 2 (FGFR2). Specific point mutations in the. FGFR2 gene have been linked to Apert syndrome, which is characterized by premature closure of cranial sutures and craniofacial anomalies as well as limb deformities. To study pathogenic mechanisms underlying craniosynostosis phenotype of Apert syndrome, we used a transgenic approach; an FGFR2 minigene construct containing an Apert mutation (a point mutation that substitute proline at the position 253 to arginine; P253R) was introduced into fertilized mouse germ cells by DNA microinjection. The injected cells were then allowed to develop into transgenic mice. We used a bone-specific promoter (a DNA fragment from the type I collagen gene) to confine the expression of mutant FGFR2 gene to the bone tissue, and asked whether expression of mutant FGFR2 in bone is sufficient to cause the craniosynostosis phenotype in mice. Initial characterization of these mice shows prematurely closed cranial sutures with facial deformities expected from Apert patients. We also demonstrate that the transgene produces mutant FGFR2 protein with increased functional activities. Having this useful mouse model, we now can ask questions regarding the role of FGFR2 in normal and abnormal development of cranial bones and sutures.

악안면 구조의 형태와 기능은 대개 유전자 정보에 의해 결정된다. 분자생물학의 발달로 인해 정상 성장과 형태 형성에 중요한 유전자에 대한 정보가 밝혀지고 있고 이는 현대 두개안면 생물학의 근간이 되고 있다. 밝혀진 사실들 중 주목할만한 것은 섬유아세포 성장인자2 (FGFR2)에 서 의 특이한 돌연변이 가 어 퍼트 증후군 (Apert syndrome) 의 발생과 관련이 있다는 것이다. 어퍼트 증후군은 두개 관상봉합의 조기 유합과 사지의 기형으로 특징지워진다. 그 중 특히 두개골 유합증의 병인과 형성기전을 연구하기 위해 본 연구에서 유전자 변환기법을 시도하여 어퍼트 증후군의 유발인자로 알려진 FGFR2에 서 의 단일 아미노산 치 환 돌연변이를 재연한 인위 유전자구조물을 제작하고 이를 미 세주입법으로 쥐의수정란에 삽입하여 형질변환 쥐를 제작하였다. 본 연구에서는 전체 조직이 아닌 골조직에서 특이하게 활성화되는 전사촉진자(promoter, 제 I형 교원질 유전자의 전사촉진자)를 이용하여 골조직에서만 돌연변이 유전자의 발현을 재현함으로써 이 시도가 쥐에서 두개골유합증을 유발하는지 검증하고자 하였다. 초기 표현형 분석을 통해 어퍼트 환자에서 기대되는 두개골 유합증을 확인하였다. 또한 본 연구에서 삽입된 변환유전자가 원활히 돌연변이 단백질을 생산하고 기능의 증가를 보임을 확인하였다. 이러한 동물 모델을 이용함으로써 이제 정상적 혹은 비정상적 두개골 및 봉합 발육에서의 FGFR2의 역할을 연구하는 것이 가능하리라 사료된다

Keywords

References

  1. Proffit WR, Fields HW. Contemporary orthodontics. St Louis, Mosby 2000 : 113-147
  2. Nuckolls GH, Shum L, Slavkin HC. Progress toward understanding craniofacial malformations. Cleft Palate Craniofac J 1999: 36 : 12-26
  3. Moss JP. The soft tissue environment of teeth and jaws. An experimental and clinical study: part 1. Br J Orthod 1980 : 7 : 127-37
  4. Moss JP. The soft tissue environment of teeth and jaws. Experimental malocclusion: Parts 2 and3. Br J Orthod 1980 : 7 : 205-16
  5. Chung CS, Niswander JD, Runck DW, Bilben SE, Kau MC. Genetic and epidemiologic studies of oral characteristics in Hawaii's schoolchildren. Ⅱ. Malocclusion. Am J Hum Genet 1971 : 23 : 471-95
  6. Litton SF, Ackermann LV, Isaacson RJ, Shapiro BL. A genetic study of Class 3 malocclusion. Am J Orthod 1970 : 58 : 565-77
  7. Wilkie AO, Morriss-Kay GM. Genetics of craniofacial development and malformation. Nat Rev Genet 2001 : 2 : 458-68
  8. Hehr U, Muenke M. Craniosynostosis syndromes: from gene to premature fusion of skull bones. Minireview. Mol Genet and Metabol 1999 : 68 : 139-51
  9. Wilkie AO, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, Hayward RD, David OJ, Pulleyn LJ, Rutland P, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 1995 : 9 : 165-72
  10. Kan S-H, Elanko N, Johnson D, Cornejo-Roldan L, Cook J, Reich et al. Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. Am J Hum Genet 2002 : 70: 472-86
  11. Wilkie AO. Craniosynostosis: genes and mechanisms. Hum Mol Genet 1997: 6: 1647-56
  12. Gorlin RJ, Cohen MM Jr, Levin LS. Syndromes of the head and neck. New York, Oxford University Press 1990 : 519
  13. Cohen MM Jr. Sutural biology and the correlates of craniosynostosis. Am J Med Genet 1993: 47 : 581-616
  14. Opperman LA. Cranial sutures as intramembranous bone growth sites. Dev Dyn 2000 Dec : 219 : 472-85
  15. Nah H. Suture biology : Lessons from molecular genetics of craniosynostosis syndromes. Clin Orthod Res 2000 : 3 : 37-45 https://doi.org/10.1034/j.1600-0544.2000.030107.x
  16. von Gernet S, Golla A, Ehrenfels Y, Schuffenhauer S, Fairley JD. Genotype-phenotype analysis in Apert syndrome suggests opposite effects of thetworecurrent mutations on syndactyly and outcome of craniofacial surgery. Clin Genet 2000 : 57 : 137-9
  17. Park WJ, Theda C, Maestri NE, Meyers GA, Fryburg JS, Dufresne C, Cohen MM Jr, Jabs EW. Analysis of phenotypic features and FGFR2 mutations in Apert syndrome. Am J Hum Genet 1995 : 57 : 321-8
  18. Lomri A, Lemonnier J, Hott M, de Parseval N, Lajeunie E, Munnich A, Renier D, Marie PJ. Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome. J Clin Invest 1998 : 101 : 1310-7
  19. Liu YH, Snead ML, Maxson RE Jr. Transgenic mouse models of craniofacial disorders. Methods Mol Biol 2000 : 137: 499-512
  20. Jacenko O. Strategies in generating transgenic mammals. Methods Mol Biol 1997 : 62 : 399-424
  21. Linder CC. The influence of genetic background on spontaneous and genetically engineered mouse models of complex diseases. Lab Anim 2001 May : 30 : 34-9
  22. Gordon JW, Scangos GA, Plotkin OJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci 1980 : 77 : 7380-4
  23. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 1985 : 317 : 230-4
  24. Ignelzi MA Jr, Liu YH, Maxson RE Jr, Snead ML. Genetically engineered mice: tools to understand craniofacial development. Crit Rev Oral Bioi Med 1995 : 6 : 181-201
  25. Dodig M, Kronenberg MS, Bedalov A, Kream BE, Gronowicz G, Clark SH, Mack K, Liu YH, Maxon R, Pan ll, Upholt WB, Rowe DW, Lichtler AC. Identification of a TAAT-containing motif required for high level expression of the COL1A1 promoter in differentiated osteoblasts of transgenic mice. J Biol Chem 1996 : 271 : 16422-9
  26. Kim HJ, Rice DP, Kettunen PJ, Thesleff I. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 1998 : 125 : 1241-51
  27. Rice DP, Rice R, Thesleff I. Molecular mechanisms in calvarial bone and suture development, and their relation to craniosynostosis. Eur J Orthod 2003 : 25 : 139-48
  28. Cohen MM Jr, Maclean RE. Anatomic, genetic, nosologic, diagnostic, and phychosocial considerations: in Craniosynostosis - diagnosis, evaluation and management. New York, Oxford University Press 2000 : 119-143
  29. Murray KA. Issues to consider when phenotyping mutant mouse models. Lab Anim 2002 : 31 : 25-9
  30. Winograd J, Reilly MP, Roe R, Lutz J, Laughner E, Xu X, Hu L, Asakura T, vander Kolk C, Strandberg JD, Semenza GL. Perinatal lethality and multiple craniofacial malformations in MSX2 transgenic mice. Hum Mol Genet 1997 : 6 : 369-79
  31. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts, Cell 1997 : 89 : 755-64
  32. Chen L, Li D, LiC, Engel A, Deng CX. A Ser250Trp substitution in mouse fibroblast growth factor receptor 2 (FGFR2) results in craniosynostosis. Bone 2003 : 33: 169-78
  33. Dressler GR, Wilkinson JE, Hothenpieler UW, Patterson LT, Williams-Simons L, Westphal H. Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature 1993 ; 362(6415) : 65-7 https://doi.org/10.1038/362065a0
  34. Visnjic D, Kalajzic I, Gronowicz G, Aguila HL, Clark SH, Lichtler AC, Rowe DW. Conditional ablation of the osteoblast lineage in Col2. 3deltatk transgenic mice. J Bone Miner Res 2001 : 16 : 2222-31
  35. Kreiborg S, Aduss H, Cohen MM Jr. Cephalometric study of the Apert syndrome in adolescence and adulthood. J Craniofac Genet Dev Biol 1999 : 19: 1-11
  36. Bachmayer DI, Ross RB, Munro IR. Maxillary growth following LeFort Ⅲ advancement surgery in Crouzon, Apert, and Pfeiffer syndromes. Am J Orthod Dentofac Orlhop 1986: 90: 420-30
  37. Cinalli G, Renier D, Sebag G, Sainte-Rose C, Arnaud E, Pierre-Kahn A. Chronic tonsillar herniation in Crouzon's and Apert's syndromes: the role of premature synostosis of the lambdoid suture. J Neurosurg 1995 : 83 : 575-82
  38. Ignelzi MA Jr, Wang W, Young AT. Fibroblast growth factors lead to increased Msx2 expression and fusion in calvarial sutures. J Bone Miner Res 2003 : 18 : 751-9
  39. Lemonnier J, Delannoy P, Holt M, Lomri A, Modrowski D, Marie PJ. The Ser252Trp fibroblast growth factor receptor-2 (FGFR-2) mutation induces PKC-independent downregulation of FGFR-2 associated with premature calvaria osteoblast differentiation. Exp Cell Res 2000 : 256 : 158-67
  40. Lemonnier J, Hay E, Delannoy P, Fromigue O, Lomri A, Modrowski D, Marie PJ. Increased osteoblast apoptosis in apert craniosynostosis: role of protein kinase Candinterleukin-1. Am J Pathol 2001 : 158 : 1833-42
  41. Neilson KM, Friesel R. Ligand-independent activation of fibroblast growth factor receptors by point mutations in the extracellular, transmembrane, and kinase domains. J Biol Chem 1996 : 271 : 25049-57
  42. Yu K, Herr AB, Waksman G, Ornitz DM. Loss of fibroblast growth factor receptor 2 ligand-binding specificity in Apert syndrome. Proc Natl Acad Sci USA 2000 : 97 : 14536-41
  43. Anderson, J., HD. Burns, P. Enriquez-Harris, A.M. Wilkie, and J.K. Heath. Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Hum Mol genet 1998 : 7 : 1475-1483