• Title/Summary/Keyword: Bone-specific promoter

Search Result 11, Processing Time 0.023 seconds

The Rat Myosin Light Chain Promoter-Driven DsRed Reporter System Allows Specific Monitoring of Bone Marrow Mesenchymal Stem Cell- Derived Cardiomyocytes

  • Choi, Seung-Cheol;Lim, Do-Sun
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.21-25
    • /
    • 2008
  • Bone marrow mesenchymal stem cells (BMMSCs) have the capacity for self-renewal and differentiation into a variety of cell types. They represent an attractive source of cells for gene and cell therapy. The purpose of this study is to direct the specific expression of the DsRed reporter gene in $Sca-1^+$ BMMSCs differentiated into a cardiomyogenic lineage. We constructed the prMLC-2v-DsRed vector expressing DsRed under the control of the 309 tp fragment of the rat MLC-2v 5'-flanking region. The specific expression of the DsRed reporter gene under the transcriptional control of the 309 bp fragment of the rat MLC-2v promoter was tested in 5-azacytidine healed-$Sca-1^+$ BMMSCs over 2 weeks after the prMLC-2v-DsRed transfection. The prMLC-2v-DsRed was specifically expressed in the $Sca-1^+$ BMMSCs with cardiomyogenic lineage differentiation and it demonstrates that the 309 bp sequences of the rat MLC-2v 5'-flanking region is sufficient to confer cardiac specific expression on a DsRed reporter gene. The cardiac-specific promoter-driven reporter vector provides an important tool for the study of stem cell differentiation and cell replacement therapy in ischemic cardiomyopathy.

Characterizations of Cell Lineage Markers in the Bone Marrow Cells of Recloned GFP Pigs for Possible Use of Stem Cell Population

  • Park, Kwang-Wook;Choi, Sung-Sik;Lee, Dong-Ho;Lee, Hwang;Choi, Seung-Kyu;Park, Chang-Sik;Lee, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • Two piglets and one juvenile pig were used to investigate closely what types of cells express green fluorescent protein (GFP) and if any, whether the GFP-tagged cells could be used for stem cell transplantation research as a middle-sized animal model in bone marrow cells of recloned GFP pigs. Bone marrow cells were recovered from the tibia, and further analyzed with various cell lineage markers to determine which cell lineage is concurrently expressing visible GFP in each individual animal. In the three animals, visible GFP were observed only in proportions of the plated cells immediately after collection, showing 41, 2 and 91% of bone marrow cells in clones #1, 2 and 3, respectively. The intensity of the visible GFP expression was variable even in an individual clone depending on cell sizes and types. The overall intensities of GFP expression were also different among the individual clones from very weak, weak to strong. Upon culture for 14 days in vitro (14DIV), some cell types showed intensive GFP expression throughout the cells; in particular, in cytoskeletons and the nucleus, on the other hand. Others are shown to be diffused GFP expression patterns only in the cytoplasm. Finally, characterization of stem cell lineage markers was carried out only in the clone #3 who showed intensive GFP expression. SSEA-1, SSEA-3, CD34, nestin and GFAP were expressed in proportions of the GFP expressing cells, but not all of them, suggesting that GFP expression occur in various cell lineages. These results indicate that targeted insertion of GFP gene should be pursued as in mouse approach to be useful for stem cell research. Furthermore, cell- or tissue-specific promoter should also be used if GFP pig is going to be meaningful for a model for stem cell transplantation.

Generation of a transgenic mouse model to study cranial suture development; Apert syndrome (두개봉합 발육 연구를 위한 형질변환 쥐의 개발 : 어퍼트 신드롬)

  • Lee, Kee-Joon;Ratisoontorn, Chootima;Baik, Hyoung-Seon;Park, Young-Chel;Park, Kwang-Kyun;Nah, Hyun-Duck
    • The korean journal of orthodontics
    • /
    • v.33 no.6 s.101
    • /
    • pp.485-497
    • /
    • 2003
  • The form and function of the craniofacial structure critically depend on genetic information. With recent advances in the molecular technology, genes that are important for normal growth and morphogenesis of the craniofacial skeleton are being rapidly uncovered, shaping up modem craniofacial biology. One of them is fibroblast growth factor receptor 2 (FGFR2). Specific point mutations in the. FGFR2 gene have been linked to Apert syndrome, which is characterized by premature closure of cranial sutures and craniofacial anomalies as well as limb deformities. To study pathogenic mechanisms underlying craniosynostosis phenotype of Apert syndrome, we used a transgenic approach; an FGFR2 minigene construct containing an Apert mutation (a point mutation that substitute proline at the position 253 to arginine; P253R) was introduced into fertilized mouse germ cells by DNA microinjection. The injected cells were then allowed to develop into transgenic mice. We used a bone-specific promoter (a DNA fragment from the type I collagen gene) to confine the expression of mutant FGFR2 gene to the bone tissue, and asked whether expression of mutant FGFR2 in bone is sufficient to cause the craniosynostosis phenotype in mice. Initial characterization of these mice shows prematurely closed cranial sutures with facial deformities expected from Apert patients. We also demonstrate that the transgene produces mutant FGFR2 protein with increased functional activities. Having this useful mouse model, we now can ask questions regarding the role of FGFR2 in normal and abnormal development of cranial bones and sutures.

A study on the osteoblast differentiation using osteocalcin gene promoter controlling luciferase expression (리포터유전자를 이용한 조골세포 분화정도에 관한 연구)

  • Kim, Kyoung-Hwa;Park, Yoon-Jeong;Lee, Yong-Moo;Han, Jung-Suk;Lee, Dong-Soo;Lee, Seung-Jin;Chung, Chong-Pyoung;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.839-847
    • /
    • 2006
  • The aim of this study is to monitor reporter gene expression under osteocalcin gene promoter, using a real-time molecular imaging system, as tool to investigate osteoblast differentiation. The promoter region of mouse osteocalcin gene 2 (mOG2), the best-characterized osteoblast-specific gene, was inserted in promoterless luciferase reporter vector. Expression of reporter gene was confirmed and relationship between the reporter gene expression and osteoblastic differentiation was evaluated. Gene expression according to osteoblstic differentiation on biomaterials, utilizing a real-time molecular imaging system, was monitored. Luciferase was expressed at the only cells transduced with pGL4/mOGP and the level of expression was statistically higher at cells cultured in mineralization medium than cells in growth medium. CCCD camera detected the luciferase expression and was visible differentiation-dependent intensity of luminescence. The cells produced osteocalcin with time-dependent increment in BMP-2 treated cells and there was difference between BMP-2 treated cells and untreated cells at 14days. There was difference at the level of luciferase expression under pGL4/mOGP between BMP-2 treated cells and untreated cells at 3days. CCCD camera detected the luciferase expression at cells transduced with pGL4/mOGP on Ti disc and was visible differentiation-dependent intensity of luminescence This study shows that 1) expression of luciferase is regulated by the mouse OC promoter, 2) the CCCD detection system is a reliable quantitative gene detection tool for the osteoblast differentiation, 3) the dynamics of mouse OC promoter regulation during osteoblast differentiation is achieved in real time and quantitatively on biomaterial. The present system is a very reliable system for monitoring of osteoblast differentiation in real time and may be used for monitoring the effects of growth factors, drug, cytokines and biomaterials on osteoblast differentiation in animal.

Prognostic Significance of $O^6$-MGMT and Promotor Hypermethylation in Patients with Soft Tissue Sarcomas (연부조직육종 환자에서 $O^6$-MGMT 와 촉진자 과메틸화의 예후적 중요성)

  • Suh, Jeung-Tak;Kim, Jeung-Il;Oh, Jong-Seok;Choi, Kyung-Un
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.15 no.1
    • /
    • pp.13-25
    • /
    • 2009
  • Purpose: The DNA repair protein, $O^6$-methylguanine-DNA methyltransferase (MGMT), removes alkyl adducts from the $O^6$ position of guanine. Epigenetic inactivation of MGMT has been found in human neoplasia and considered one of the implicated factors in chemoresistance. Materials and Methods: Sixty-two patiensts with soft tissue sarcomas (STS) were analyzed for the status of MGMT protein expression by immunohistochemistry and the promoter hypermethylation of the MGMT gene using methylation-specific PCR. Result: The loss of MGMT expression was found in 20 cases (32.3%) of total 62 STS. MGMT promoter hypermethylation rate was 25.0% (11/44 cases). The loss of MGMT expression showed significant association with high AJCC stage, high FNCLCC grade, and aggressive behavior. However,when the group who received chemotherapy was analyzed (n=27), loss of MGMT expression was correlated with worse survival in multivariate analysis (p=0.024). MGMT promoter hypermethylation is associated with high FNCLCC grade. MGMT promoter hypermethylation status had a strong correlation with loss of MGMT expression (p=0.000). Conclusion: Our results suggest that MGMT promoter hypermethylation and loss of MGMT expression had a tendency to be associated with poor prognosis and that loss of MGMT protein expression is frequently occurs via MGMT promoter hypermethylation.

  • PDF

The synergistic regulatory effect of Runx2 and MEF transcription factors on osteoblast differentiation markers

  • Lee, Jae-Mok;Libermann, Towia A.;Cho, Je-Yoel
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • Purpose: Bone tissues for clinical application can be improved by studies on osteoblast differentiation. Runx2 is known to be an important transcription factor for osteoblast differentiation. However, bone morphogenetic protein (BMP)-2 treatment to stimulate Runx2 is not sufficient to acquire enough bone formation in osteoblasts. Therefore, it is necessary to find other regulatory factors which can improve the transcriptional activity of Runx2. The erythroblast transformation-specific (ETS) transcription factor family is reported to be involved in various aspects of cellular proliferation and differentiation. Methods: We have noticed that the promoters of osteoblast differentiation markers such as alkaline phosphatase (Alp), osteopontin (Opn), and osteocalcin (Oc) contain Ets binding sequences which are also close to Runx2 binding elements. Luciferase assays were performed to measure the promoter activities of these osteoblast differentiation markers after the transfection of Runx2, myeloid Elf-1-like factor (MEF), and Runxs+MEF. Reverse-transcription polymerase chain reaction was also done to check the mRNA levels of Opn after Runx2 and MEF transfection into rat osteoblast (ROS) cells. Results: We have found that MEF, an Ets transcription factor, increased the transcriptional activities of Alp, Opn, and Oc. The addition of Runx2 resulted in the 2- to 6-fold increase of the activities. This means that these two transcription factors have a synergistic effect on the osteoblast differentiation markers. Furthermore, early introduction of these two Runx2 and MEF factors significantly elevated the expression of the Opn mRNA levels in ROS cells. We also showed that Runx2 and MEF proteins physically interact with each other. Conclusions: Runx2 interacts with MEF proteins and binds to the promoters of the osteoblast markers such as Opn nearby MEF to increase its transcriptional activity. Our results also imply that osteoblast differentiation and bone formation can be increased by activating MEF to elicit the synergistic effect of Runx2 and MEF.

Production of Soluble Recombinant Human Granulocyte Colony Stimulating Factor in E. coli by Control of Growth Rate. (대장균에서 증식속도 조절에 의한 수용성 재조합 인간 과립구 콜로니 촉진인자의 생산)

  • 박세철;고인영;강희일
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.135-141
    • /
    • 2004
  • Human granulocyte colony-stimulating factor (hG-CSF) is a hematopoiesis agent that principally affects the differentiation of neutrophils in the bone marrow. At present, recombinant hG-CSF is used successfully in the treatment of chemotheraphy-induced neutropenia and its indication has been expanded to bone marrow transplantation and aplastic anemia. In this study, we have constructed rhG-CSF secretion plasmid pYRC1 in which OmpA signal sequence/hG-CSF gene was expressed under the control of the T7 promoter. rhG-CSF produced in E. coli BL21 (pYRC1) grown at $37{\circ}C$ was found in aggregates. However, 15% of the periplasmic protein was soluble rhG-CSF when the E. coli BL21 (pYRC1) was cultured at $25^{\circ}C$ for 7 h in the modified MBL medium containing 10 g/$\ell$ glucose with 10 $\mu$M IPTG induction. The production of soluble rhG-CSF in E. coli BL21 (pYRC1) using fed batch culture was also studied. In the fed batch culture system, the final yield of rhG-CSF produced from E. coli BL21 (pYRC1) was increased from 4.4 mg/$\ell$to 24 mg/$\ell$by controlling the specific growth rate from $0.43 h^{-1}$ to $0.14 h^{-1}$, and optimizing the time of induction.

Transdifferentiation of α-1,3-galactosyltransferase knockout pig bone marrow derived mesenchymal stem cells into pancreatic β-like cells by microenvironment modulation

  • Ullah, Imran;Lee, Ran;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Hur, Tai-Young;Ock, Sun A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1837-1847
    • /
    • 2020
  • Objective: To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media. Methods: The BM-MSCs have been differentiated into pancreatic β-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media - advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated. Results: The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic β-like cells in the N2B27-based media than in the ADMEM-based media. Conclusion: 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic β-like cells.

Alternative Isoforms of the mi Transcription Factor (MITF) Regulate the Expression of mMCP-6 in the Connective Tissue-Type Mast Cells Cultured with Stem Cell Factor (SCF에서 배양한 결합조직형 비만세포에서 mMCP-6 발현을 조절하는 MITF 이형체)

  • Lee, Sun-Hee;Guan, Xiu-Ying;Kim, Dae-Ki
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1348-1354
    • /
    • 2008
  • mi transcription factor (MITF) is important in regulating the differentiation of mast cells. In particular, MITF regulates the transcription of the mouse mast cell-specific serine protease (mMCP)-6 gene, which is generally expressed by the connective tissue-type of mast cells. In this study, we investigated alternative isoforms of MITF that regulate transcription of the mMCP-6 gene in bone marrow-derived cultured mast cells in mice. The expression of MITF isoforms was examined by RT-PCR. We observed that MITF-A, -E, -H and -Mc were expressed by mucosal-type mast cells cultured in the presence of IL-3, whereas the connective tissue-type mast cells cultured in the presence of stem cell factor (SCF) expressed MITF-A. Overexpression of MITF isoforms increased luciferase activity through the mMCP-6 promoter in NIH-3T3 cells and elevated the level of mMCP-6 expression in the MC/9 mast cell line. Moreover, mMCP-6 expression in mast cells was significantly inhibited by the depletion of MITF. The transcriptional activity and DNA binding of MITF-A was comparable to that of MITF isoforms, including MITF-E, -H, and -Mc. Our results therefore suggest that MITF-A may be an important isoform of MITF in regulating the transcription of mMCP-6 in mouse connective tissue mast cells.

The estrogen-related receptor γ modulator, GSK5182, inhibits osteoclast differentiation and accelerates osteoclast apoptosis

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.266-271
    • /
    • 2021
  • Estrogen-related receptor γ (ERRγ), a member of the orphan nuclear receptor family, is a key mediator in cellular metabolic processes and energy homeostasis. Therefore, ERRγ has become an attractive target for treating diverse metabolic disorders. We recently reported that ERRγ acts as a negative regulator of osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In the present study, we explored the effects of an ERRγ-specific modulator, GSK5182, on ERRγ-regulated osteoclast differentiation and survival. Interestingly, GSK5182 increased ERRγ protein levels much as does GSK4716, which is an ERRγ agonist. GSK5182 inhibited osteoclast generation from bone-marrow-derived macrophages without affecting cytotoxicity. GSK5182 also attenuated RANKL-mediated expression of cFos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), pivotal transcription factors for osteoclastogenesis. Arrested osteoclast differentiation was associated with reduced RANK expression, but not with the M-CSF receptor, c-Fms. GSK5182 strongly blocked the phosphorylation of IκBα, c-Jun N-terminal kinase, and extracellular signal-regulated kinase in response to RANKL. GSK5182 also suppressed NF-κB promoter activity in a dose-dependent manner. In addition to osteoclastogenesis, GSK5182 accelerated osteoclast apoptosis by caspase-3 activation. Together, these results suggest that GSK5182, a synthetic ERRγ modulator, may have potential in treating disorders related to bone resorption.